Suppr超能文献

体内G1期细胞周期蛋白依赖性激酶复合物对视网膜母细胞瘤肿瘤抑制蛋白的差异性调控

Differential regulation of retinoblastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo.

作者信息

Ezhevsky S A, Ho A, Becker-Hapak M, Davis P K, Dowdy S F

机构信息

Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Mol Cell Biol. 2001 Jul;21(14):4773-84. doi: 10.1128/MCB.21.14.4773-4784.2001.

Abstract

The retinoblastoma tumor suppressor protein (pRB) negatively regulates early-G(1) cell cycle progression, in part, by sequestering E2F transcription factors and repressing E2F-responsive genes. Although pRB is phosphorylated on up to 16 cyclin-dependent kinase (Cdk) sites by multiple G(1) cyclin-Cdk complexes, the active form(s) of pRB in vivo remains unknown. pRB is present as an unphosphorylated protein in G(0) quiescent cells and becomes hypophosphorylated (approximately 2 mol of PO(4) to 1 mol of pRB) in early G(1) and hyperphosphorylated (approximately 10 mol of PO(4) to 1 mol of pRB) in late G(1) phase. Here, we report that hypophosphorylated pRB, present in early G(1), represents the biologically active form of pRB in vivo that is assembled with E2Fs and E1A but that both unphosphorylated pRB in G(0) and hyperphosphorylated pRB in late G(1) fail to become assembled with E2Fs and E1A. Furthermore, using transducible dominant-negative TAT fusion proteins that differentially target cyclin D-Cdk4 or cyclin D-Cdk6 (cyclin D-Cdk4/6) and cyclin E-Cdk2 complexes, namely, TAT-p16 and TAT-dominant-negative Cdk2, respectively, we found that, in vivo, cyclin D-Cdk4/6 complexes hypophosphorylate pRB in early G(1) and that cyclin E-Cdk2 complexes inactivate pRB by hyperphosphorylation in late G(1). Moreover, we found that cycling human tumor cells expressing deregulated cyclin D-Cdk4/6 complexes, due to deletion of the p16(INK4a) gene, contained hypophosphorylated pRB that was bound to E2Fs in early G(1) and that E2F-responsive genes, including those for dihydrofolate reductase and cyclin E, were transcriptionally repressed. Thus, we conclude that, physiologically, pRB is differentially regulated by G(1) cyclin-Cdk complexes.

摘要

视网膜母细胞瘤肿瘤抑制蛋白(pRB)部分通过隔离E2F转录因子并抑制E2F反应基因来负向调节G1早期的细胞周期进程。尽管pRB可被多种G1细胞周期蛋白 - 细胞周期蛋白依赖性激酶(Cdk)复合物在多达16个Cdk位点上磷酸化,但pRB在体内的活性形式仍不清楚。pRB在G0静止细胞中以未磷酸化蛋白形式存在,在G1早期变为低磷酸化(约2摩尔磷酸根/1摩尔pRB),在G1晚期变为高磷酸化(约10摩尔磷酸根/1摩尔pRB)。在此,我们报告,存在于G1早期的低磷酸化pRB代表pRB在体内的生物活性形式,它与E2F和E1A组装在一起,但G0期的未磷酸化pRB和G1晚期的高磷酸化pRB都不能与E2F和E1A组装。此外,使用分别靶向细胞周期蛋白D - Cdk4或细胞周期蛋白D - Cdk6(细胞周期蛋白D - Cdk4/6)和细胞周期蛋白E - Cdk2复合物的可转导显性负性TAT融合蛋白,即TAT - p16和TAT - 显性负性Cdk2,我们发现,在体内,细胞周期蛋白D - Cdk4/6复合物在G1早期使pRB低磷酸化,细胞周期蛋白E - Cdk2复合物在G1晚期通过高磷酸化使pRB失活。此外,我们发现由于p16(INK4a)基因缺失而表达失调的细胞周期蛋白D - Cdk4/6复合物的人肿瘤细胞在G1早期含有与E2F结合的低磷酸化pRB,并且包括二氢叶酸还原酶和细胞周期蛋白E等E2F反应基因在转录上受到抑制。因此,我们得出结论,在生理上,pRB受G1细胞周期蛋白 - Cdk复合物的差异调节。

相似文献

1
Differential regulation of retinoblastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo.
Mol Cell Biol. 2001 Jul;21(14):4773-84. doi: 10.1128/MCB.21.14.4773-4784.2001.
2
Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb.
Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10699-704. doi: 10.1073/pnas.94.20.10699.

引用本文的文献

1
Natural Resistance to HIV Infection: Role of Immune Activation.
Immun Inflamm Dis. 2025 Feb;13(2):e70138. doi: 10.1002/iid3.70138.
2
CCN2 functions as a modulator of cell cycle regulation in human dermal fibroblasts.
J Cell Commun Signal. 2025 Feb 1;19(1):e70003. doi: 10.1002/ccs3.70003. eCollection 2025 Mar.
3
Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use.
Signal Transduct Target Ther. 2025 Jan 24;10(1):44. doi: 10.1038/s41392-024-02083-w.
4
The role of palbociclib on the alterations in CDKN2, CCNE1, E2F3, MDM2 expressions as target genes of miR-141.
PLoS One. 2024 Aug 8;19(8):e0306545. doi: 10.1371/journal.pone.0306545. eCollection 2024.
5
Clinical considerations of CDK4/6 inhibitors in HER2 positive breast cancer.
Front Oncol. 2024 Jan 16;13:1322078. doi: 10.3389/fonc.2023.1322078. eCollection 2023.
6
Exploring the Role of microRNAs in Glioma Progression, Prognosis, and Therapeutic Strategies.
Cancers (Basel). 2023 Aug 22;15(17):4213. doi: 10.3390/cancers15174213.
7
A novel CDK4/6 inhibitor combined with irradiation demonstrates potent anti-tumor efficacy in diffuse midline glioma.
J Neurooncol. 2023 May;163(1):159-171. doi: 10.1007/s11060-023-04323-5. Epub 2023 May 3.
8
Bridged Proteolysis Targeting Chimera (PROTAC) Enables Degradation of Undruggable Targets.
J Am Chem Soc. 2022 Dec 14;144(49):22622-22632. doi: 10.1021/jacs.2c09255. Epub 2022 Nov 30.
9
The Four Homeostasis Knights: In Balance upon Post-Translational Modifications.
Int J Mol Sci. 2022 Nov 21;23(22):14480. doi: 10.3390/ijms232214480.

本文引用的文献

2
A common E2F-1 and p73 pathway mediates cell death induced by TCR activation.
Nature. 2000 Oct 5;407(6804):642-5. doi: 10.1038/35036608.
3
Requirements for cell cycle arrest by p16INK4a.
Mol Cell. 2000 Sep;6(3):737-42. doi: 10.1016/s1097-2765(00)00072-1.
4
The Drosophila cyclin D-Cdk4 complex promotes cellular growth.
EMBO J. 2000 Sep 1;19(17):4543-54. doi: 10.1093/emboj/19.17.4543.
5
Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression.
EMBO J. 2000 Sep 1;19(17):4533-42. doi: 10.1093/emboj/19.17.4533.
7
Protein transduction: unrestricted delivery into all cells?
Trends Cell Biol. 2000 Jul;10(7):290-5. doi: 10.1016/s0962-8924(00)01771-2.
8
Rb function in cell-cycle regulation and apoptosis.
Nat Cell Biol. 2000 Apr;2(4):E65-7. doi: 10.1038/35008695.
9
In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA.
Trends Pharmacol Sci. 2000 Feb;21(2):45-8. doi: 10.1016/s0165-6147(99)01429-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验