Suppr超能文献

恶性疟原虫亚端粒区域在空间定位和端粒长度调控中的核心作用。

A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation.

作者信息

Figueiredo Luisa M, Freitas-Junior Lúcio H, Bottius Emmanuel, Olivo-Marin Jean-Christophe, Scherf Artur

机构信息

Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France.

出版信息

EMBO J. 2002 Feb 15;21(4):815-24. doi: 10.1093/emboj/21.4.815.

Abstract

In the protozoan malaria parasite, Plasmodium falciparum, the telomere-associated sequences (TASs) of the 14 linear chromosomes display a similar higher order organization and form clusters of four to seven telomeres localized at the nuclear periphery. Experimental evidence has shown that the physical tethering of chromosome ends enhances the ectopic recombination between gene families involved in antigenic variation and parasite sequestration. Using FISH analysis, we observed that chromosome ends lacking the subtelomeric region are usually delocalized from telomere clusters, but still remain at the nuclear periphery. This indicates that subtelomeric DNA is necessary for cluster formation but is not essential for peripheral positioning. Intriguingly, these truncated chromosomes have unusually long telomeric tracts (up to three times longer than average length), showing that TASs play a role in telomere length regulation. On these chromosomes, the newly formed telomere frequently extends from truncated genes leading, in some cases, to the transcription of telomeric DNA. The implications of both subtelomeric gene expression and nuclear architecture in the virulence of this serious human pathogen are discussed.

摘要

在原生动物疟原虫恶性疟原虫中,14条线性染色体的端粒相关序列(TASs)呈现出相似的高级组织形式,并形成由四到七个端粒组成的簇,定位于核周边。实验证据表明,染色体末端的物理连接增强了参与抗原变异和寄生虫滞留的基因家族之间的异位重组。通过荧光原位杂交(FISH)分析,我们观察到缺乏亚端粒区域的染色体末端通常从端粒簇中脱离,但仍保留在核周边。这表明亚端粒DNA对于簇的形成是必要的,但对于周边定位并非必不可少。有趣的是,这些截短的染色体具有异常长的端粒序列(比平均长度长多达三倍),表明TASs在端粒长度调节中起作用。在这些染色体上,新形成的端粒经常从截短的基因延伸,在某些情况下导致端粒DNA的转录。本文讨论了亚端粒基因表达和核结构对这种严重人类病原体毒力的影响。

相似文献

3
A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology.
PLoS Pathog. 2010 Feb 26;6(2):e1000784. doi: 10.1371/journal.ppat.1000784.
5
Differential association of Orc1 and Sir2 proteins to telomeric domains in Plasmodium falciparum.
J Cell Sci. 2008 Jun 15;121(Pt 12):2046-53. doi: 10.1242/jcs.026427.
6
Impact of chromosome ends on the biology and virulence of Plasmodium falciparum.
Mol Biochem Parasitol. 2013 Feb;187(2):121-8. doi: 10.1016/j.molbiopara.2013.01.003. Epub 2013 Jan 24.
7
A modified fluorescence in situ hybridization protocol for Plasmodium falciparum greatly improves nuclear architecture conservation.
Mol Biochem Parasitol. 2010 Sep;173(1):48-52. doi: 10.1016/j.molbiopara.2010.04.006. Epub 2010 Apr 28.
9
The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum.
Nature. 1999 Aug 5;400(6744):532-8. doi: 10.1038/22964.

引用本文的文献

1
High-resolution map of the Plasmodium falciparum genome reveals MORC/ApiAP2-mediated links between distant, functionally related genes.
Nat Microbiol. 2025 Jul;10(7):1665-1683. doi: 10.1038/s41564-025-02038-z. Epub 2025 Jun 30.
2
Low prevalence of Plasmodium falciparum histidine-rich protein 2 and 3 gene deletions in malaria-endemic states of India.
PLoS One. 2024 Dec 18;19(12):e0315662. doi: 10.1371/journal.pone.0315662. eCollection 2024.
3
Decoding the impact of nuclear organization on antigenic variation in parasites.
Nat Microbiol. 2023 Aug;8(8):1408-1418. doi: 10.1038/s41564-023-01424-9. Epub 2023 Jul 31.
4
Architecture, Chromatin and Gene Organization of Subtelomeres.
Epigenomes. 2022 Sep 15;6(3):29. doi: 10.3390/epigenomes6030029.
5
Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites.
Front Cell Dev Biol. 2022 Mar 8;10:852239. doi: 10.3389/fcell.2022.852239. eCollection 2022.
6
GBP2 Is a Telomere-Associated Protein That Binds to G-Quadruplex DNA and RNA.
Front Cell Infect Microbiol. 2022 Feb 22;12:782537. doi: 10.3389/fcimb.2022.782537. eCollection 2022.
7
Chromosome splitting of Plasmodium berghei using the CRISPR/Cas9 system.
PLoS One. 2022 Feb 24;17(2):e0260176. doi: 10.1371/journal.pone.0260176. eCollection 2022.
8
Telomere Roles in Fungal Genome Evolution and Adaptation.
Front Genet. 2021 Aug 9;12:676751. doi: 10.3389/fgene.2021.676751. eCollection 2021.
9
Telomere length dynamics in response to DNA damage in malaria parasites.
iScience. 2021 Jan 20;24(2):102082. doi: 10.1016/j.isci.2021.102082. eCollection 2021 Feb 19.
10
Subtelomeric Transcription and its Regulation.
J Mol Biol. 2020 Jul 10;432(15):4199-4219. doi: 10.1016/j.jmb.2020.01.026. Epub 2020 Feb 6.

本文引用的文献

1
Plasmodium telomeres: a pathogen's perspective.
Curr Opin Microbiol. 2001 Aug;4(4):409-14. doi: 10.1016/s1369-5274(00)00227-7.
3
Telomere position effect in human cells.
Science. 2001 Jun 15;292(5524):2075-7. doi: 10.1126/science.1062329.
4
Pot1, the putative telomere end-binding protein in fission yeast and humans.
Science. 2001 May 11;292(5519):1171-5. doi: 10.1126/science.1060036.
5
Telomere looping permits gene activation by a downstream UAS in yeast.
Nature. 2001 Jan 4;409(6816):109-13. doi: 10.1038/35051119.
6
t-loops at trypanosome telomeres.
EMBO J. 2001 Feb 1;20(3):579-88. doi: 10.1093/emboj/20.3.579.
7
Telomeres and their control.
Annu Rev Genet. 2000;34:331-358. doi: 10.1146/annurev.genet.34.1.331.
9
Targeted terminal deletions as a tool for functional genomics studies in Plasmodium.
Genome Res. 2000 Sep;10(9):1414-20. doi: 10.1101/gr.140000.
10
Genomic organisation and chromatin structure of Plasmodium falciparum chromosome ends.
Mol Biochem Parasitol. 2000 Feb 25;106(1):169-74. doi: 10.1016/s0166-6851(99)00199-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验