Nakada Yuji, Itoh Yoshifumi
Division of Applied Microbiology, National Food Research Institute, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan.
J Bacteriol. 2002 Jun;184(12):3377-84. doi: 10.1128/JB.184.12.3377-3384.2002.
The arginine dehydrogenase (or oxidase) pathway catabolically converts arginine to succinate via 2-ketoglutarate and 4-guanidinobutyrate (4-GB) with the concomitant formation of CO(2) and urea. Guanidinobutyrase (GBase; EC 3.5.3.7) catalyzes the conversion of 4-guanidinobutyrate to 4-aminobutyrate and urea in this pathway. We investigated the structure and regulation of the gene for GBase (designated gbuA) of Pseudomonas aeruginosa PAO1 and characterized the gbuA product. The gbuA and the adjacent gbuR genes were cloned by functional complementation of a gbuA9005 mutant of strain PAO1 defective in 4-GB utilization. The deduced amino acid sequence of GbuA (319 amino acids; M(r) 34,695) assigned GBase to the arginase/agmatinase family of C-N hydrolases. Purified GbuA was a homotetramer of 140 kDa that catalyzed the specific hydrolysis of 4-GB with K(m) and K(cat) values of 49 mM and 1,012 s(-1,) respectively. The divergent gbuR gene, which shared the intergenic promoter region of 206 bp with gbuA, encoded a putative regulatory protein (297 amino acids; M(r) 33,385) homologous to the LysR family of proteins. Insertional inactivation of gbuR by a gentamicin resistance cassette caused a defect in 4-GB utilization. GBase and gbuA'::'lacZ fusion assays demonstrated that this gbuR mutation abolishes the inducible expression of gbuA by exogenous 4-GB, indicating that GbuR participates in the regulation of this gene. Northern blotting located an inducible promoter for gbuA in the intergenic region, and primer extension localized the transcription start site of this promoter at 40 bp upstream from the initiation codon of gbuA. The gbuRA genes at the genomic map position of 1547000 are unlinked to the 2-ketoarginine utilization gene kauB at 5983000, indicative of at least two separate genetic units involved in the arginine dehydrogenase pathway.
精氨酸脱氢酶(或氧化酶)途径通过2-酮戊二酸和4-胍基丁酸(4-GB)将精氨酸分解代谢为琥珀酸,同时生成二氧化碳和尿素。胍基丁酸酶(GBase;EC 3.5.3.7)在此途径中催化4-胍基丁酸转化为4-氨基丁酸和尿素。我们研究了铜绿假单胞菌PAO1的GBase基因(命名为gbuA)的结构和调控,并对gbuA产物进行了表征。通过对PAO1菌株中利用4-GB有缺陷的gbuA9005突变体进行功能互补,克隆了gbuA及其相邻的gbuR基因。推导的GbuA氨基酸序列(319个氨基酸;M(r) 34,695)将GBase归为C-N水解酶的精氨酸酶/胍丁胺酶家族。纯化的GbuA是一个140 kDa的同四聚体,催化4-GB的特异性水解,K(m)和K(cat)值分别为49 mM和1,012 s(-1)。与gbuA共享206 bp基因间启动子区域的不同gbuR基因,编码一种与LysR蛋白家族同源的假定调节蛋白(297个氨基酸;M(r) 33,385)。用庆大霉素抗性盒插入失活gbuR导致4-GB利用缺陷。GBase和gbuA'::'lacZ融合分析表明,这种gbuR突变消除了外源4-GB对gbuA的诱导表达,表明GbuR参与了该基因的调控。Northern印迹分析在基因间区域定位了gbuA的一个可诱导启动子,引物延伸将该启动子的转录起始位点定位在gbuA起始密码子上游40 bp处。基因组图谱位置为1547000的gbuRA基因与5983000处的2-酮精氨酸利用基因kauB不连锁,这表明精氨酸脱氢酶途径中至少涉及两个独立的遗传单位。