Yang Xiang-Lei, Skene Robert J, McRee Duncan E, Schimmel Paul
The Skaggs Institute for Chemical Biology, BCC-379, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15369-74. doi: 10.1073/pnas.242611799. Epub 2002 Nov 11.
The 20 aminoacyl-tRNA synthetases catalyze the first step of protein synthesis and establish the rules of the genetic code through aminoacylation reactions. Biological fragments of two human enzymes, tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, connect protein synthesis to cell-signaling pathways including angiogenesis. Alternative splicing or proteolysis produces these fragments. The proangiogenic N-terminal fragment mini-TyrRS has IL-8-like cytokine activity that, like other CXC cytokines, depends on a Glu-Leu-Arg motif. Point mutations in this motif abolish cytokine activity. The full-length native TyrRS lacks cytokine activity. No structure has been available for any mammalian tRNA synthetase that, in turn, might give insight into why mini-TyrRS and not TyrRS has cytokine activities. Here, the structure of human mini-TyrRS, which contains both the catalytic and the anticodon recognition domain, is reported to a resolution of 1.18 A. The critical Glu-Leu-Arg motif is located on an internal alpha-helix of the catalytic domain, where the guanidino side chain of R is part of a hydrogen-bonding network tethering the anticodon-recognition domain back to the catalytic site. Whereas the catalytic domains of the human and bacterial enzymes superimpose, the spatial disposition of the anticodon recognition domain relative to the catalytic domain is unique in mini-TyrRS relative to the bacterial orthologs. This unique orientation of the anticodon-recognition domain can explain why the fragment mini-TyrRS, and not full-length native TyrRS, is active in cytokine-signaling pathways.
20种氨酰-tRNA合成酶催化蛋白质合成的第一步,并通过氨酰化反应确立遗传密码规则。两种人类酶——酪氨酰-tRNA合成酶(TyrRS)和色氨酰-tRNA合成酶的生物学片段,将蛋白质合成与包括血管生成在内的细胞信号通路联系起来。这些片段通过可变剪接或蛋白水解产生。促血管生成的N端片段mini-TyrRS具有白细胞介素-8样细胞因子活性,与其他CXC细胞因子一样,依赖于一个Glu-Leu-Arg基序。该基序中的点突变会消除细胞因子活性。全长天然TyrRS缺乏细胞因子活性。尚未获得任何哺乳动物tRNA合成酶的结构,而这可能有助于深入了解为何是mini-TyrRS而非TyrRS具有细胞因子活性。在此,报道了包含催化结构域和反密码子识别结构域的人类mini-TyrRS的结构,分辨率达到1.18 Å。关键的Glu-Leu-Arg基序位于催化结构域的一个内部α螺旋上,其中R的胍基侧链是将反密码子识别结构域与催化位点连接起来的氢键网络的一部分。虽然人类和细菌酶的催化结构域相互重叠,但相对于细菌直系同源物,mini-TyrRS中反密码子识别结构域相对于催化结构域的空间布局是独特的。反密码子识别结构域的这种独特取向可以解释为什么片段mini-TyrRS而非全长天然TyrRS在细胞因子信号通路中具有活性。