Suppr超能文献

置于微针床上的细胞:一种分离机械力的方法。

Cells lying on a bed of microneedles: an approach to isolate mechanical force.

作者信息

Tan John L, Tien Joe, Pirone Dana M, Gray Darren S, Bhadriraju Kiran, Chen Christopher S

机构信息

Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9. doi: 10.1073/pnas.0235407100. Epub 2003 Jan 27.

Abstract

We describe an approach to manipulate and measure mechanical interactions between cells and their underlying substrates by using microfabricated arrays of elastomeric, microneedle-like posts. By controlling the geometry of the posts, we varied the compliance of the substrate while holding other surface properties constant. Cells attached to, spread across, and deflected multiple posts. The deflections of the posts occurred independently of neighboring posts and, therefore, directly reported the subcellular distribution of traction forces. We report two classes of force-supporting adhesions that exhibit distinct force-size relationships. Force increased with size of adhesions for adhesions larger than 1 microm(2), whereas no such correlation existed for smaller adhesions. By controlling cell adhesion on these micromechanical sensors, we showed that cell morphology regulates the magnitude of traction force generated by cells. Cells that were prevented from spreading and flattening against the substrate did not contract in response to stimulation by serum or lysophosphatidic acid, whereas spread cells did. Contractility in the unspread cells was rescued by expression of constitutively active RhoA. Together, these findings demonstrate a coordination of biochemical and mechanical signals to regulate cell adhesion and mechanics, and they introduce the use of arrays of mechanically isolated sensors to manipulate and measure the mechanical interactions of cells.

摘要

我们描述了一种通过使用微制造的弹性体微针状柱阵列来操纵和测量细胞与其下层基质之间机械相互作用的方法。通过控制柱的几何形状,我们在保持其他表面特性不变的情况下改变了基质的顺应性。细胞附着在多个柱上,铺展并使柱发生偏转。柱的偏转独立于相邻柱发生,因此直接反映了牵引力的亚细胞分布。我们报告了两类具有不同力-大小关系的力支撑粘附。对于大于1平方微米的粘附,力随粘附大小增加,而对于较小的粘附则不存在这种相关性。通过控制细胞在这些微机械传感器上的粘附,我们表明细胞形态调节细胞产生的牵引力大小。被阻止在基质上铺展和扁平化的细胞在受到血清或溶血磷脂酸刺激时不会收缩,而铺展的细胞会收缩。通过组成型激活的RhoA的表达挽救了未铺展细胞的收缩性。总之,这些发现证明了生化和机械信号的协调以调节细胞粘附和力学,并且引入了使用机械隔离传感器阵列来操纵和测量细胞的机械相互作用。

相似文献

1
Cells lying on a bed of microneedles: an approach to isolate mechanical force.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9. doi: 10.1073/pnas.0235407100. Epub 2003 Jan 27.
2
Magnetic microposts as an approach to apply forces to living cells.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14553-8. doi: 10.1073/pnas.0611613104. Epub 2007 Sep 5.
3
The regulation of traction force in relation to cell shape and focal adhesions.
Biomaterials. 2011 Mar;32(8):2043-51. doi: 10.1016/j.biomaterials.2010.11.044. Epub 2010 Dec 15.
4
Traction forces exerted by epithelial cell sheets.
J Phys Condens Matter. 2010 May 19;22(19):194119. doi: 10.1088/0953-8984/22/19/194119. Epub 2010 Apr 26.
5
Microfabricated post-array-detectors (mPADs): an approach to isolate mechanical forces.
J Vis Exp. 2007(7):311. doi: 10.3791/311. Epub 2007 Oct 1.
6
Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells.
Methods Cell Biol. 2007;83:313-28. doi: 10.1016/S0091-679X(07)83013-5.
8
Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery.
J Control Release. 2005 May 5;104(1):51-66. doi: 10.1016/j.jconrel.2005.02.002. Epub 2005 Apr 1.
9
Impact of adhesive area on cellular traction force and spread area.
J Biomed Mater Res A. 2023 May;111(5):609-617. doi: 10.1002/jbm.a.37518. Epub 2023 Feb 20.
10
Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration.
Mol Biol Cell. 2001 Dec;12(12):3947-54. doi: 10.1091/mbc.12.12.3947.

引用本文的文献

1
Hybrid SiO/Si pillar-based optomechanical crystals for on-chip photonic integration.
Nanophotonics. 2025 Jul 28;14(17):2953-2961. doi: 10.1515/nanoph-2025-0232. eCollection 2025 Aug.
3
Micropillars in Cell Mechanobiology: Design, Fabrication, Characterization, and Biosensing Applications.
Small Sci. 2024 Dec 9;5(4):2400410. doi: 10.1002/smsc.202400410. eCollection 2025 Apr.
4
Synphilin-1 regulates mechanotransduction in rigidity sensing through interaction with zyxin.
J Nanobiotechnology. 2025 May 14;23(1):345. doi: 10.1186/s12951-025-03429-4.
5
Alpha-actinin-1 stabilizes focal adhesions to facilitate sarcomere assembly in cardiac myocytes.
bioRxiv. 2025 Mar 29:2025.03.28.645933. doi: 10.1101/2025.03.28.645933.
6
Measuring mechanical stress in living tissues.
Nat Rev Phys. 2020 May 28;2(6):300-317. doi: 10.1038/s42254-020-0184-6.
8
Probing the physical hallmarks of cancer.
Nat Methods. 2025 Jan 15. doi: 10.1038/s41592-024-02564-4.
9
Measuring the biomechanical properties of cell-derived fibronectin fibrils.
Biomech Model Mechanobiol. 2025 Apr;24(2):455-469. doi: 10.1007/s10237-024-01918-3. Epub 2024 Dec 26.
10
Cellular and Nuclear Forces: An Overview.
Methods Mol Biol. 2025;2881:3-39. doi: 10.1007/978-1-0716-4280-1_1.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
3
Networks and crosstalk: integrin signalling spreads.
Nat Cell Biol. 2002 Apr;4(4):E65-8. doi: 10.1038/ncb0402-e65.
4
Flexible substrata for the detection of cellular traction forces.
Trends Cell Biol. 2002 Feb;12(2):79-84. doi: 10.1016/s0962-8924(01)02205-x.
5
Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins.
Sci STKE. 2002 Feb 12;2002(119):pe6. doi: 10.1126/stke.2002.119.pe6.
6
Force transduction by Triton cytoskeletons.
J Cell Biol. 2002 Feb 18;156(4):609-15. doi: 10.1083/jcb.200110068. Epub 2002 Feb 11.
7
Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk.
Nat Rev Mol Cell Biol. 2001 Nov;2(11):793-805. doi: 10.1038/35099066.
8
Surface molecular recognition.
Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):12870-1. doi: 10.1073/pnas.231391398. Epub 2001 Oct 30.
9
Assembly and mechanosensory function of focal contacts.
Curr Opin Cell Biol. 2001 Oct;13(5):584-92. doi: 10.1016/s0955-0674(00)00255-6.
10
Soft lithography in biology and biochemistry.
Annu Rev Biomed Eng. 2001;3:335-73. doi: 10.1146/annurev.bioeng.3.1.335.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验