Suppr超能文献

Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease.

作者信息

Yan Qiao, Zhang Jianhua, Liu Hantao, Babu-Khan Safura, Vassar Robert, Biere Anja Leona, Citron Martin, Landreth Gary

机构信息

Department of Neuroscience, Amgen Inc., Thousand Oaks, California 91320, USA.

出版信息

J Neurosci. 2003 Aug 20;23(20):7504-9. doi: 10.1523/JNEUROSCI.23-20-07504.2003.

Abstract

Alzheimer's disease (AD) is characterized by a microglial-mediated inflammatory response elicited by extensive amyloid deposition in the brain. Nonsteroidal anti-inflammatory drug (NSAID) treatment reduces AD risk, slows disease progression, and reduces microglial activation; however, the basis of these effects is unknown. We report that treatment of 11-month-old Tg2576 mice overexpressing human amyloid precursor protein (APP) with the NSAID ibuprofen for 16 weeks resulted in the dramatic and selective reduction of SDS-soluble beta-amyloid (Abeta)42, whereas it had smaller effects on SDS-soluble Abeta40 levels. Ibuprofen treatment resulted in 60% reduction of amyloid plaque load in the cortex of these animals. In vitro studies using APP-expressing 293 cells showed that ibuprofen directly affected APP processing, specifically reducing the production of Abeta42. Ibuprofen treatment resulted in a significant reduction in microglial activation in the Tg2576 mice, as measured by CD45 and CD11b expression. NSAIDs activate the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma); however, a potent agonist of this receptor, pioglitazone, only modestly reduced SDS-soluble Abeta levels and did not affect amyloid plaque burden or microglia activation, indicating that PPARgamma activation is not involved in the Abeta lowering effect of NSAIDs. These data show that chronic NSAID treatment can reduce brain Abeta levels, amyloid plaque burden, and microglial activation in an animal model of Alzheimer's disease.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验