Suppr超能文献

控制元回归中虚假结果的风险。

Controlling the risk of spurious findings from meta-regression.

作者信息

Higgins Julian P T, Thompson Simon G

机构信息

MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 2SR, U.K.

出版信息

Stat Med. 2004 Jun 15;23(11):1663-82. doi: 10.1002/sim.1752.

Abstract

Meta-regression has become a commonly used tool for investigating whether study characteristics may explain heterogeneity of results among studies in a systematic review. However, such explorations of heterogeneity are prone to misleading false-positive results. It is unclear how many covariates can reliably be investigated, and how this might depend on the number of studies, the extent of the heterogeneity and the relative weights awarded to the different studies. Our objectives in this paper are two-fold. First, we use simulation to investigate the type I error rate of meta-regression in various situations. Second, we propose a permutation test approach for assessing the true statistical significance of an observed meta-regression finding. Standard meta-regression methods suffer from substantially inflated false-positive rates when heterogeneity is present, when there are few studies and when there are many covariates. These are typical of situations in which meta-regressions are routinely employed. We demonstrate in particular that fixed effect meta-regression is likely to produce seriously misleading results in the presence of heterogeneity. The permutation test appropriately tempers the statistical significance of meta-regression findings. We recommend its use before a statistically significant relationship is claimed from a standard meta-regression analysis.

摘要

Meta回归已成为一种常用工具,用于在系统评价中探究研究特征是否可以解释各研究结果的异质性。然而,这种对异质性的探索容易产生误导性的假阳性结果。目前尚不清楚能够可靠地研究多少协变量,以及这可能如何取决于研究数量、异质性程度以及赋予不同研究的相对权重。本文的目标有两个。首先,我们使用模拟来研究meta回归在各种情况下的I型错误率。其次,我们提出一种置换检验方法,用于评估观察到的meta回归结果的真正统计学显著性。当存在异质性、研究数量较少以及协变量较多时,标准的meta回归方法会出现大幅膨胀的假阳性率。这些都是常规使用meta回归的典型情况。我们特别证明,在存在异质性的情况下,固定效应meta回归可能会产生严重误导性的结果。置换检验适当地缓和了meta回归结果的统计学显著性。我们建议在从标准meta回归分析中声称存在统计学显著关系之前使用该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验