Kon Kazuyoshi, Kim Jae-Sung, Jaeschke Hartmut, Lemasters John J
Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 27599-7090, USA.
Hepatology. 2004 Nov;40(5):1170-9. doi: 10.1002/hep.20437.
Acetaminophen overdose causes massive hepatic failure via mechanisms involving glutathione depletion, oxidative stress, and mitochondrial dysfunction. The ultimate target of acetaminophen causing cell death remains uncertain, and the role of apoptosis in acetaminophen-induced cell killing is still controversial. Our aim was to evaluate the mitochondrial permeability transition (MPT) as a key factor in acetaminophen-induced necrotic and apoptotic killing of primary cultured mouse hepatocytes. After administration of 10 mmol/L acetaminophen, necrotic killing increased to more than 49% and 74%, respectively, after 6 and 16 hours. MPT inhibitors, cyclosporin A (CsA), and NIM811 temporarily decreased necrotic killing after 6 hours to 26%, but cytoprotection was lost after 16 hours. Confocal microscopy revealed mitochondrial depolarization and inner membrane permeabilization approximately 4.5 hours after acetaminophen administration. CsA delayed these changes, indicative of the MPT, to approximately 11 hours after acetaminophen administration. Apoptosis indicated by nuclear changes, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and caspase-3 activation also increased after acetaminophen administration. Fructose (20 mmol/L, an adenosine triphosphate-generating glycolytic substrate) plus glycine (5 mmol/L, a membrane stabilizing amino acid) prevented nearly all necrotic cell killing but paradoxically increased apoptosis from 37% to 59% after 16 hours. In the presence of fructose plus glycine, CsA decreased apoptosis and delayed but did not prevent the MPT. In conclusion, after acetaminophen a CsA-sensitive MPT occurred after 3 to 6 hours followed by a CsA-insensitive MPT 9 to 16 hours after acetaminophen. The MPT then induces ATP depletion-dependent necrosis or caspase-dependent apoptosis as determined, in part, by ATP availability from glycolysis.
对乙酰氨基酚过量通过涉及谷胱甘肽耗竭、氧化应激和线粒体功能障碍的机制导致大规模肝衰竭。对乙酰氨基酚导致细胞死亡的最终靶点仍不确定,且凋亡在对乙酰氨基酚诱导的细胞杀伤中的作用仍存在争议。我们的目的是评估线粒体通透性转换(MPT)作为对乙酰氨基酚诱导原代培养小鼠肝细胞坏死和凋亡性杀伤的关键因素。给予10 mmol/L对乙酰氨基酚后,6小时和16小时后坏死性杀伤分别增加至超过49%和74%。MPT抑制剂环孢素A(CsA)和NIM811在6小时后暂时将坏死性杀伤降低至26%,但16小时后细胞保护作用丧失。共聚焦显微镜显示,给予对乙酰氨基酚后约4.5小时线粒体去极化和内膜通透性增加。CsA将这些指示MPT的变化延迟至给予对乙酰氨基酚后约11小时。给予对乙酰氨基酚后,由核变化、末端脱氧核苷酸转移酶介导的dUTP缺口末端标记和半胱天冬酶-3激活所指示的凋亡也增加。果糖(20 mmol/L,一种产生三磷酸腺苷的糖酵解底物)加甘氨酸(5 mmol/L,一种膜稳定氨基酸)几乎防止了所有坏死性细胞杀伤,但矛盾的是,16小时后凋亡从37%增加到59%。在存在果糖加甘氨酸的情况下,CsA减少了凋亡并延迟但未阻止MPT。总之,给予对乙酰氨基酚后,3至6小时出现CsA敏感的MPT,随后在对乙酰氨基酚给药后9至16小时出现CsA不敏感的MPT。然后,MPT诱导依赖于三磷酸腺苷耗竭的坏死或半胱天冬酶依赖性凋亡,这部分取决于糖酵解产生的三磷酸腺苷可用性。