Suppr超能文献

MPSim-Dock分层对接算法:在八种胰蛋白酶抑制剂共晶体中的应用。

The MPSim-Dock hierarchical docking algorithm: application to the eight trypsin inhibitor cocrystals.

作者信息

Cho Art E, Wendel John A, Vaidehi Nagarajan, Kekenes-Huskey Peter M, Floriano Wely B, Maiti Prabal K, Goddard William A

机构信息

Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Comput Chem. 2005 Jan 15;26(1):48-71. doi: 10.1002/jcc.20118.

Abstract

To help improve the accuracy of protein-ligand docking as a useful tool for drug discovery, we developed MPSim-Dock, which ensures a comprehensive sampling of diverse families of ligand conformations in the binding region followed by an enrichment of the good energy scoring families so that the energy scores of the sampled conformations can be reliably used to select the best conformation of the ligand. This combines elements of DOCK4.0 with molecular dynamics (MD) methods available in the software, MPSim. We test here the efficacy of MPSim-Dock to predict the 64 protein-ligand combinations formed by starting with eight trypsin cocrystals, and crossdocking the other seven ligands to each protein conformation. We consider this as a model for how well the method would work for one given target protein structure. Using as a criterion that the structures within 2 kcal/mol of the top scoring include a conformation within a coordinate root mean square (CRMS) of 1 A of the crystal structure, we find that 100% of the 64 cases are predicted correctly. This indicates that MPSim-Dock can be used reliably to identify strongly binding ligands, making it useful for virtual ligand screening.

摘要

为了提高蛋白质-配体对接作为药物发现有用工具的准确性,我们开发了MPSim-Dock,它能确保对结合区域中不同家族的配体构象进行全面采样,随后富集能量得分良好的家族,以便采样构象的能量得分能够可靠地用于选择配体的最佳构象。这将DOCK4.0的元素与软件MPSim中可用的分子动力学(MD)方法相结合。我们在此测试MPSim-Dock预测由八个胰蛋白酶共晶体开始形成的64种蛋白质-配体组合的功效,并将其他七个配体交叉对接至每个蛋白质构象。我们将此视为该方法对一个给定目标蛋白质结构的工作效果的模型。以得分最高的结构中2千卡/摩尔以内的结构包含与晶体结构的坐标均方根(CRMS)在1埃以内的构象为标准,我们发现64个案例中有100%被正确预测。这表明MPSim-Dock可可靠地用于识别强结合配体,使其对虚拟配体筛选有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验