Suppr超能文献

运动神经元存活蛋白决定了小核核糖核蛋白组装的能力:脊髓性肌萎缩症中的生化缺陷。

The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy.

作者信息

Wan Lili, Battle Daniel J, Yong Jeongsik, Gubitz Amelie K, Kolb Stephen J, Wang Jin, Dreyfuss Gideon

机构信息

Howard Hughes Medical Institute, Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.

出版信息

Mol Cell Biol. 2005 Jul;25(13):5543-51. doi: 10.1128/MCB.25.13.5543-5551.2005.

Abstract

Reduction of the survival of motor neurons (SMN) protein levels causes the motor neuron degenerative disease spinal muscular atrophy, the severity of which correlates with the extent of reduction in SMN. SMN, together with Gemins 2 to 7, forms a complex that functions in the assembly of small nuclear ribonucleoprotein particles (snRNPs). Complete depletion of the SMN complex from cell extracts abolishes snRNP assembly, the formation of heptameric Sm cores on snRNAs. However, what effect, if any, reduction of SMN protein levels, as occurs in spinal muscular atrophy patients, has on the capacity of cells to produce snRNPs is not known. To address this, we developed a sensitive and quantitative assay for snRNP assembly, the formation of high-salt- and heparin-resistant stable Sm cores, that is strictly dependent on the SMN complex. We show that the extent of Sm core assembly is directly proportional to the amount of SMN protein in cell extracts. Consistent with this, pulse-labeling experiments demonstrate a significant reduction in the rate of snRNP biogenesis in low-SMN cells. Furthermore, extracts of cells from spinal muscular atrophy patients have a lower capacity for snRNP assembly that corresponds directly to the reduced amount of SMN. Thus, SMN determines the capacity for snRNP biogenesis, and our findings provide evidence for a measurable deficiency in a biochemical activity in cells from patients with spinal muscular atrophy.

摘要

运动神经元存活蛋白(SMN)水平的降低会导致运动神经元退行性疾病脊髓性肌萎缩症,其严重程度与SMN的减少程度相关。SMN与Gemins 2至7一起形成一个复合物,该复合物在小核核糖核蛋白颗粒(snRNP)的组装中发挥作用。从细胞提取物中完全去除SMN复合物会消除snRNP的组装,即snRNA上七聚体Sm核心的形成。然而,脊髓性肌萎缩症患者中出现的SMN蛋白水平降低对细胞产生snRNP的能力有何影响(如果有)尚不清楚。为了解决这个问题,我们开发了一种灵敏且定量的snRNP组装检测方法,即形成高盐和肝素抗性稳定Sm核心的检测方法,该方法严格依赖于SMN复合物。我们发现Sm核心组装的程度与细胞提取物中SMN蛋白的量成正比。与此一致,脉冲标记实验表明低SMN细胞中snRNP生物合成速率显著降低。此外,脊髓性肌萎缩症患者细胞的提取物具有较低的snRNP组装能力,这与SMN量的减少直接相关。因此,SMN决定了snRNP生物合成的能力,我们的研究结果为脊髓性肌萎缩症患者细胞中生化活性的可测量缺陷提供了证据。

相似文献

2
The SMN complex: an assembly machine for RNPs.
Cold Spring Harb Symp Quant Biol. 2006;71:313-20. doi: 10.1101/sqb.2006.71.001.
3
The Gemin5 protein of the SMN complex identifies snRNAs.
Mol Cell. 2006 Jul 21;23(2):273-9. doi: 10.1016/j.molcel.2006.05.036.
4
Is good housekeeping the key to motor neuron survival?
Cell. 2008 May 16;133(4):572-4. doi: 10.1016/j.cell.2008.05.002.
5
The SMN binding protein Gemin2 is not involved in motor axon outgrowth.
Dev Neurobiol. 2008 Feb 1;68(2):182-94. doi: 10.1002/dneu.20582.
7
Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10126-31. doi: 10.1073/pnas.152318699. Epub 2002 Jun 28.
9
The SMN complex.
Exp Cell Res. 2004 May 15;296(1):51-6. doi: 10.1016/j.yexcr.2004.03.022.
10
Gemins modulate the expression and activity of the SMN complex.
Hum Mol Genet. 2005 Jun 15;14(12):1605-11. doi: 10.1093/hmg/ddi168. Epub 2005 Apr 20.

引用本文的文献

1
Sm-site containing mRNAs can accept Sm-rings and are downregulated in Spinal Muscular Atrophy.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf794.
2
The U1 snRNP-specific protein U1C is a key regulator of SMN complex-mediated snRNP formation.
J Biol Chem. 2025 Jul 22;301(9):110514. doi: 10.1016/j.jbc.2025.110514.
3
The Cajal body marker protein coilin is SUMOylated and possesses SUMO E3 ligase-like activity.
Front RNA Res. 2023;1. doi: 10.3389/frnar.2023.1197990. Epub 2023 Jun 4.
4
Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy.
Brain Pathol. 2023 Sep;33(5):e13162. doi: 10.1111/bpa.13162. Epub 2023 May 22.
5
The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration.
Int J Mol Sci. 2023 Jan 23;24(3):2247. doi: 10.3390/ijms24032247.
9
Interaction of 7SK with the Smn complex modulates snRNP production.
Nat Commun. 2021 Feb 24;12(1):1278. doi: 10.1038/s41467-021-21529-1.
10
Conditional deletion of SMN in cell culture identifies functional SMN alleles.
Hum Mol Genet. 2020 Nov 1;29(21):3477-3492. doi: 10.1093/hmg/ddaa229. Epub 2020 Oct 19.

本文引用的文献

1
How cells coordinate growth and division.
Curr Biol. 2004 Dec 14;14(23):R1014-27. doi: 10.1016/j.cub.2004.11.027.
2
Why do cells need an assembly machine for RNA-protein complexes?
Trends Cell Biol. 2004 May;14(5):226-32. doi: 10.1016/j.tcb.2004.03.010.
3
Spinal muscular atrophy.
Curr Neurol Neurosci Rep. 2004 Jan;4(1):74-80. doi: 10.1007/s11910-004-0016-6.
4
The spliceosome: the most complex macromolecular machine in the cell?
Bioessays. 2003 Dec;25(12):1147-9. doi: 10.1002/bies.10394.
5
Valproic acid increases SMN levels in spinal muscular atrophy patient cells.
Ann Neurol. 2003 Nov;54(5):647-54. doi: 10.1002/ana.10743.
6
Essential role for the SMN complex in the specificity of snRNP assembly.
Science. 2002 Nov 29;298(5599):1775-9. doi: 10.1126/science.1074962.
8
Spinal muscular atrophy.
Semin Pediatr Neurol. 2002 Jun;9(2):145-50. doi: 10.1053/spen.2002.33801.
9
Sequence-specific interaction of U1 snRNA with the SMN complex.
EMBO J. 2002 Mar 1;21(5):1188-96. doi: 10.1093/emboj/21.5.1188.
10
A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs.
Nat Cell Biol. 2001 Nov;3(11):945-9. doi: 10.1038/ncb1101-945.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验