Suppr超能文献

ELAV在对ewg剪接调控很重要的保守AU4-6基序上多聚化。

ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation.

作者信息

Soller Matthias, White Kalpana

机构信息

Department of Biology, Brandeis University, Waltham, MA 02454, USA.

出版信息

Mol Cell Biol. 2005 Sep;25(17):7580-91. doi: 10.1128/MCB.25.17.7580-7591.2005.

Abstract

ELAV is a gene-specific regulator of alternative pre-mRNA processing in Drosophila neurons. Since ELAV/Hu proteins preferentially bind to AU-rich regions that are generally abundant in introns and untranslated regions, it has not been clear how gene specificity is achieved. Here we used a combination of in vitro biochemical experiments together with phylogenetic comparisons and in vivo analysis of Drosophila transgenes to study ELAV binding to the last ewg intron and splicing regulation. In vitro binding studies of ELAV show that ELAV multimerizes on the ewg binding site and forms a defined and saturable complex. Further, sizing of the ELAV-RNA complex and a series of titration experiments indicate that ELAV forms a dodecameric complex on 135 nucleotides in the last ewg intron. Analysis of the substrate RNA requirements for ELAV binding and complex formation indicates that a series of AU(4-6) motifs spread over the entire binding site are important, but not a strictly defined sequence element. The importance of AU(4-6) motifs, but not spacing between them, is further supported by evolutionary conservation in several melanogaster species subgroups. Finally, using transgenes we demonstrate in fly neurons that ELAV-mediated regulation of ewg intron 6 splicing requires several AU(4-6) motifs and that introduction of spacer sequence between conserved AU(4-6) motifs has a minimal effect on splicing. Collectively, our results suggest that ELAV multimerization and binding to multiple AU(4-6) motifs contribute to target RNA recognition and processing in a complex cellular environment.

摘要

ELAV是果蝇神经元中前体mRNA可变加工的基因特异性调节因子。由于ELAV/Hu蛋白优先结合富含AU的区域,这些区域通常在内含子和非翻译区中大量存在,因此尚不清楚基因特异性是如何实现的。在这里,我们结合体外生化实验、系统发育比较以及果蝇转基因的体内分析,来研究ELAV与ewg基因最后一个内含子的结合及剪接调控。ELAV的体外结合研究表明,ELAV在ewg结合位点上多聚化并形成一个明确且可饱和的复合物。此外,对ELAV-RNA复合物的大小分析和一系列滴定实验表明,ELAV在ewg基因最后一个内含子的135个核苷酸上形成十二聚体复合物。对ELAV结合和复合物形成的底物RNA需求分析表明,分布在整个结合位点上的一系列AU(4-6)基序很重要,但不是严格定义的序列元件。几个黑腹果蝇物种亚组中的进化保守性进一步支持了AU(4-6)基序而非它们之间的间隔的重要性。最后,我们利用转基因在果蝇神经元中证明,ELAV介导的ewg基因内含子6剪接调控需要几个AU(4-6)基序,并且在保守的AU(4-6)基序之间引入间隔序列对剪接的影响最小。总体而言,我们的结果表明,ELAV多聚化以及与多个AU(4-6)基序的结合有助于在复杂的细胞环境中识别和加工靶RNA。

相似文献

1
ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation.
Mol Cell Biol. 2005 Sep;25(17):7580-91. doi: 10.1128/MCB.25.17.7580-7591.2005.
3
Regulation of the ELAV target ewg: insights from an evolutionary perspective.
Biochem Soc Trans. 2008 Jun;36(Pt 3):502-4. doi: 10.1042/BST0360502.
4
The neuron-enriched splicing pattern of Drosophila erect wing is dependent on the presence of ELAV protein.
Mol Cell Biol. 2000 Mar;20(5):1836-45. doi: 10.1128/MCB.20.5.1836-1845.2000.
5
ELAV/Hu RNA binding proteins determine multiple programs of neural alternative splicing.
PLoS Genet. 2021 Apr 7;17(4):e1009439. doi: 10.1371/journal.pgen.1009439. eCollection 2021 Apr.
6
ELAV inhibits 3'-end processing to promote neural splicing of ewg pre-mRNA.
Genes Dev. 2003 Oct 15;17(20):2526-38. doi: 10.1101/gad.1106703. Epub 2003 Oct 1.
8
Determinants of ELAV gene-specific regulation.
Biochem Soc Trans. 2010 Aug;38(4):1122-4. doi: 10.1042/BST0381122.
9
Concentration and Localization of Coexpressed ELAV/Hu Proteins Control Specificity of mRNA Processing.
Mol Cell Biol. 2015 Sep;35(18):3104-15. doi: 10.1128/MCB.00473-15. Epub 2015 Jun 29.

引用本文的文献

1
Modular in vivo assembly of Arabidopsis FCA oligomers into condensates competent for RNA 3' processing.
EMBO J. 2025 Apr;44(7):2056-2074. doi: 10.1038/s44318-025-00394-4. Epub 2025 Feb 24.
2
Phylogenomic instructed target analysis reveals ELAV complex binding to multiple optimally spaced U-rich motifs.
Nucleic Acids Res. 2024 Nov 11;52(20):12712-12726. doi: 10.1093/nar/gkae826.
3
Memory consolidation in honey bees is enhanced by down-regulation of and changes its alternative splicing.
Front Mol Neurosci. 2024 Jan 9;16:1322808. doi: 10.3389/fnmol.2023.1322808. eCollection 2023.
4
HPF1 regulates tendon stem/progenitor cell senescence and tendon repair via PARP1-mediated poly-ADP ribosylation of HuR.
Genes Genomics. 2024 Jan;46(1):27-36. doi: 10.1007/s13258-023-01447-w. Epub 2023 Sep 15.
5
Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors.
Cancers (Basel). 2022 May 27;14(11):2666. doi: 10.3390/cancers14112666.
6
Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins.
Front Genet. 2022 Feb 23;13:848626. doi: 10.3389/fgene.2022.848626. eCollection 2022.
7
Repression of the Hox gene abd-A by ELAV-mediated Transcriptional Interference.
PLoS Genet. 2021 Nov 15;17(11):e1009843. doi: 10.1371/journal.pgen.1009843. eCollection 2021 Nov.
8
Dynamically expressed single ELAV/Hu orthologue elavl2 of bees is required for learning and memory.
Commun Biol. 2021 Oct 28;4(1):1234. doi: 10.1038/s42003-021-02763-1.
9
ELAV/Hu RNA binding proteins determine multiple programs of neural alternative splicing.
PLoS Genet. 2021 Apr 7;17(4):e1009439. doi: 10.1371/journal.pgen.1009439. eCollection 2021 Apr.

本文引用的文献

1
Exon repression by polypyrimidine tract binding protein.
RNA. 2005 May;11(5):699-716. doi: 10.1261/rna.2250405.
2
GAP-43 mRNA in growth cones is associated with HuD and ribosomes.
J Neurobiol. 2004 Nov;61(2):222-35. doi: 10.1002/neu.20038.
3
Structure and RNA interactions of the N-terminal RRM domains of PTB.
Structure. 2004 Sep;12(9):1631-43. doi: 10.1016/j.str.2004.07.008.
4
Identification of a target RNA motif for RNA-binding protein HuR.
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2987-92. doi: 10.1073/pnas.0306453101. Epub 2004 Feb 23.
5
Increase of the RNA-binding protein HuD and posttranscriptional up-regulation of the GAP-43 gene during spatial memory.
Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1217-22. doi: 10.1073/pnas.0307674100. Epub 2004 Jan 26.
6
RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1.
Nat Struct Mol Biol. 2004 Jan;11(1):20-8. doi: 10.1038/nsmb706. Epub 2003 Dec 29.
7
CLIP identifies Nova-regulated RNA networks in the brain.
Science. 2003 Nov 14;302(5648):1212-5. doi: 10.1126/science.1090095.
8
A protein interaction map of Drosophila melanogaster.
Science. 2003 Dec 5;302(5651):1727-36. doi: 10.1126/science.1090289. Epub 2003 Nov 6.
9
ELAV inhibits 3'-end processing to promote neural splicing of ewg pre-mRNA.
Genes Dev. 2003 Oct 15;17(20):2526-38. doi: 10.1101/gad.1106703. Epub 2003 Oct 1.
10
Two neuronal, nuclear-localized RNA binding proteins involved in synaptic transmission.
Curr Biol. 2003 Aug 5;13(15):1317-23. doi: 10.1016/s0960-9822(03)00532-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验