Suppr超能文献

从重组编码序列中进行正向选择的稳健推断。

Robust inference of positive selection from recombining coding sequences.

作者信息

Scheffler Konrad, Martin Darren P, Seoighe Cathal

机构信息

Computational Biology Group, Institute of Infectious Disease and Molecular Medicine University of Cape Town, Private Bag, Rondebosch 7701, South Africa.

出版信息

Bioinformatics. 2006 Oct 15;22(20):2493-9. doi: 10.1093/bioinformatics/btl427. Epub 2006 Aug 7.

Abstract

MOTIVATION

Accurate detection of positive Darwinian selection can provide important insights to researchers investigating the evolution of pathogens. However, many pathogens (particularly viruses) undergo frequent recombination and the phylogenetic methods commonly applied to detect positive selection have been shown to give misleading results when applied to recombining sequences. We propose a method that makes maximum likelihood inference of positive selection robust to the presence of recombination. This is achieved by allowing tree topologies and branch lengths to change across detected recombination breakpoints. Further improvements are obtained by allowing synonymous substitution rates to vary across sites.

RESULTS

Using simulation we show that, even for extreme cases where recombination causes standard methods to reach false positive rates >90%, the proposed method decreases the false positive rate to acceptable levels while retaining high power. We applied the method to two HIV-1 datasets for which we have previously found that inference of positive selection is invalid owing to high rates of recombination. In one of these (env gene) we still detected positive selection using the proposed method, while in the other (gag gene) we found no significant evidence of positive selection.

AVAILABILITY

A HyPhy batch language implementation of the proposed methods and the HIV-1 datasets analysed are available at http://www.cbio.uct.ac.za/pub_support/bioinf06. The HyPhy package is available at http://www.hyphy.org, and it is planned that the proposed methods will be included in the next distribution. RDP2 is available at http://darwin.uvigo.es/rdp/rdp.html

摘要

动机

准确检测正向达尔文选择可为研究病原体进化的研究人员提供重要见解。然而,许多病原体(尤其是病毒)会频繁发生重组,并且已证明通常用于检测正向选择的系统发育方法应用于重组序列时会产生误导性结果。我们提出了一种方法,使正向选择的最大似然推断对重组的存在具有鲁棒性。这是通过允许树形拓扑结构和分支长度在检测到的重组断点处发生变化来实现的。通过允许同义替换率在不同位点变化可获得进一步的改进。

结果

通过模拟我们表明,即使对于重组导致标准方法的假阳性率>90%的极端情况,所提出的方法也能将假阳性率降低到可接受水平,同时保持高功效。我们将该方法应用于两个HIV-1数据集,我们之前发现由于重组率高,正向选择的推断是无效的。在其中一个数据集(env基因)中,我们使用所提出的方法仍然检测到了正向选择,而在另一个数据集(gag基因)中,我们没有发现正向选择的显著证据。

可用性

所提出方法的HyPhy批处理语言实现以及所分析的HIV-1数据集可在http://www.cbio.uct.ac.za/pub_support/bioinf06获得。HyPhy软件包可在http://www.hyphy.org获得,并且计划将所提出的方法纳入下一次发布中。RDP2可在http://darwin.uvigo.es/rdp/rdp.html获得

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验