Bailey Timothy W, Hermes Sam M, Andresen Michael C, Aicher Sue A
Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
J Neurosci. 2006 Nov 15;26(46):11893-902. doi: 10.1523/JNEUROSCI.2044-06.2006.
Cranial visceral afferents activate central pathways that mediate systemic homeostatic processes. Afferent information arrives in the brainstem nucleus of the solitary tract (NTS) and is relayed to other CNS sites for integration into autonomic responses and complex behaviors. Little is known about the organization or nature of processing within NTS. We injected fluorescent retrograde tracers into two nuclei to identify neurons that project to sites involved in autonomic regulation: the caudal ventrolateral medulla (CVLM) or paraventricular nucleus of the hypothalamus (PVN). We found distinct differences in synaptic connections and performance in the afferent path through NTS to these neurons. Anatomical studies using confocal and electron microscopy found prominent, primary afferent synapses directly on somata and dendrites of CVLM-projecting NTS neurons identifying them as second-order neurons. In brainstem slices, afferent activation evoked large, constant latency EPSCs in CVLM-projecting NTS neurons that were consistent with the precise timing and rare failures of monosynaptic contacts on second-order neurons. In contrast, most PVN-projecting NTS neurons lacked direct afferent input and responded to afferent stimuli with highly variable, intermittently failing synaptic responses, indicating polysynaptic pathways to higher-order neurons. The afferent-evoked EPSCs in most PVN-projecting NTS neurons were smaller and unreliable but also often included multiple, convergent polysynaptic responses not observed in CVLM-projecting neurons. A few PVN-projecting NTS neurons had monosynaptic EPSC characteristics. Together, we found that cranial visceral afferent pathways are structured distinctly within NTS depending on the projection target. Such, intra-NTS pathway architecture will substantially impact performance of autonomic or neuroendocrine reflex arcs.
颅内脏传入神经激活介导全身稳态过程的中枢通路。传入信息到达孤束核(NTS)的脑干核,并被传递到其他中枢神经系统部位,以整合到自主反应和复杂行为中。关于NTS内处理的组织或性质知之甚少。我们将荧光逆行示踪剂注入两个核,以识别投射到参与自主调节的部位的神经元:延髓尾端腹外侧核(CVLM)或下丘脑室旁核(PVN)。我们发现通过NTS到这些神经元的传入路径在突触连接和性能上存在明显差异。使用共聚焦显微镜和电子显微镜的解剖学研究发现,在投射到CVLM的NTS神经元的胞体和树突上直接有突出的初级传入突触,将它们识别为二级神经元。在脑干切片中,传入激活在投射到CVLM的NTS神经元中诱发了大的、潜伏期恒定的兴奋性突触后电流(EPSCs),这与二级神经元上单突触接触的精确时间和罕见失败一致。相比之下,大多数投射到PVN的NTS神经元缺乏直接传入输入,对传入刺激的反应是高度可变的、间歇性失败的突触反应,表明通向高阶神经元的多突触通路。大多数投射到PVN的NTS神经元中传入诱发的EPSCs较小且不可靠,但也经常包括在投射到CVLM的神经元中未观察到的多个、汇聚的多突触反应。少数投射到PVN的NTS神经元具有单突触EPSC特征。总之,我们发现颅内脏传入通路在NTS内根据投射目标而有明显的结构。因此,NTS内的通路结构将对自主或神经内分泌反射弧的性能产生重大影响。