Colognato Holly, Galvin Jason, Wang Zhen, Relucio Jenne, Nguyen Tom, Harrison David, Yurchenco Peter D, Ffrench-Constant Charles
Department of Pharmacology, State University of New York, Stony Brook, NY 11794, USA.
Development. 2007 May;134(9):1723-36. doi: 10.1242/dev.02819. Epub 2007 Mar 29.
Developmental abnormalities of myelination are observed in the brains of laminin-deficient humans and mice. The mechanisms by which these defects occur remain unknown. It has been proposed that, given their central role in mediating extracellular matrix (ECM) interactions, integrin receptors are likely to be involved. However, it is a non-integrin ECM receptor, dystroglycan, that provides the key linkage between the dystrophin-glycoprotein complex (DGC) and laminin in skeletal muscle basal lamina, such that disruption of this bridge results in muscular dystrophy. In addition, the loss of dystroglycan from Schwann cells causes myelin instability and disorganization of the nodes of Ranvier. To date, it is unknown whether dystroglycan plays a role during central nervous system (CNS) myelination. Here, we report that the myelinating glia of the CNS, oligodendrocytes, express and use dystroglycan receptors to regulate myelin formation. In the absence of normal dystroglycan expression, primary oligodendrocytes showed substantial deficits in their ability to differentiate and to produce normal levels of myelin-specific proteins. After blocking the function of dystroglycan receptors, oligodendrocytes failed both to produce complex myelin membrane sheets and to initiate myelinating segments when co-cultured with dorsal root ganglion neurons. By contrast, enhanced oligodendrocyte survival in response to the ECM, in conjunction with growth factors, was dependent on interactions with beta-1 integrins and did not require dystroglycan. Together, these results indicate that laminins are likely to regulate CNS myelination by interacting with both integrin receptors and dystroglycan receptors, and that oligodendrocyte dystroglycan receptors may have a specific role in regulating terminal stages of myelination, such as myelin membrane production, growth, or stability.
在层粘连蛋白缺陷的人类和小鼠大脑中观察到了髓鞘形成的发育异常。这些缺陷发生的机制尚不清楚。有人提出,鉴于整合素受体在介导细胞外基质(ECM)相互作用中起核心作用,它们可能参与其中。然而,在骨骼肌基膜中,是一种非整合素ECM受体——肌营养不良聚糖,提供了肌营养不良蛋白-糖蛋白复合物(DGC)与层粘连蛋白之间的关键联系,因此这座桥梁的破坏会导致肌肉萎缩症。此外,雪旺氏细胞中肌营养不良聚糖的缺失会导致髓鞘不稳定和郎飞结紊乱。迄今为止,尚不清楚肌营养不良聚糖在中枢神经系统(CNS)髓鞘形成过程中是否发挥作用。在此,我们报告中枢神经系统的髓鞘形成胶质细胞——少突胶质细胞,表达并利用肌营养不良聚糖受体来调节髓鞘形成。在缺乏正常肌营养不良聚糖表达的情况下,原代少突胶质细胞在分化能力和产生正常水平的髓鞘特异性蛋白方面表现出显著缺陷。在阻断肌营养不良聚糖受体的功能后,当与背根神经节神经元共培养时,少突胶质细胞既无法产生复杂的髓鞘膜片,也无法启动髓鞘形成节段。相比之下,少突胶质细胞对ECM的反应性增强以及与生长因子共同作用时的存活,依赖于与β-1整合素的相互作用,而不需要肌营养不良聚糖。总之,这些结果表明层粘连蛋白可能通过与整合素受体和肌营养不良聚糖受体相互作用来调节中枢神经系统的髓鞘形成,并且少突胶质细胞的肌营养不良聚糖受体可能在调节髓鞘形成的终末阶段,如髓鞘膜产生、生长或稳定性方面具有特定作用。