Suppr超能文献

1H-吲哚-2,3-二酮衍生物的合成及其构效关系与抗结核活性

Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives.

作者信息

Karali Nilgün, Gürsoy Aysel, Kandemirli Fatma, Shvets Nathaly, Kaynak F Betül, Ozbey Süheyla, Kovalishyn Vasyl, Dimoglo Anatholy

机构信息

Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Beyazit, Istanbul, Turkey.

出版信息

Bioorg Med Chem. 2007 Sep 1;15(17):5888-904. doi: 10.1016/j.bmc.2007.05.063. Epub 2007 Jun 2.

Abstract

New series of 5-fluoro-1H-indole-2,3-dione-3-thiosemicarbazones 2a-k and 5-fluoro-1-morpholino/piperidinomethyl-1H-indole-2,3-dione-3-thiosemicarbazones 3a-r were synthesized. The structures of the synthesized compounds were confirmed by spectral data, elemental and single crystal X-ray diffraction analysis. The new 5-fluoro-1H-indole-2,3-dione derivatives, along with previously reported 5-nitro-1H-indole-2,3-dione-3-thiosemicarbazones 2l-v, 1-morpholino/piperidinomethyl-5-nitro-1H-indole-2,3-dione-3-thiosemicarbazones 4a-l, and 5-nitro-1H-indole-2,3-dione-3-[(4-oxo-1,3-thiazolidin-2-ylidene)hydrazones] 5a-s, were evaluated for in vitro antituberculosis activity against Mycobacterium tuberculosis H37Rv. Among the tested compounds, 5-nitro-1H-indole-2,3-dione-3-thiosemicarbazones (2p, 2r, and 2s) and its 1-morpholinomethyl derivatives (4a, 4e, 4g, and 4i) exhibited significant inhibitory activity in the primary screen. The antituberculosis activity of molecules with diverse skeletons was investigated by means of the Electronic-Topological Method (ETM). Ten pharmacophores and ten anti-pharmacophores that have been found by this form the basis of the system capable of predicting the structures of potentially active compounds. The forecasting ability of the system has been tested on structures that differ from those synthesized. The probability of correct identification for active compounds was found as equal to 93% in average. To obtain the algorithmic base for the activity prediction, Artificial Neural Networks were used after the ETM (the so-called combined ETM-ANN method). As the result, only 9 pharmacophores and anti-pharmacophores were chosen as the most important ones for the activity. By this, ANNs classified correctly 94.4%, or 67 compounds from 71.

摘要

合成了一系列新的5-氟-1H-吲哚-2,3-二酮-3-硫代半卡巴腙2a-k和5-氟-1-吗啉代/哌啶甲基-1H-吲哚-2,3-二酮-3-硫代半卡巴腙3a-r。通过光谱数据、元素分析和单晶X射线衍射分析确定了合成化合物的结构。新的5-氟-1H-吲哚-2,3-二酮衍生物,连同先前报道的5-硝基-1H-吲哚-二酮-3-硫代半卡巴腙2l-v、1-吗啉代/哌啶甲基-5-硝基-1H-吲哚-2,3-二酮-3-硫代半卡巴腙4a-l和5-硝基-1H-吲哚-2,3-二酮-3-[(4-氧代-1,3-噻唑烷-2-亚基)腙]5a-s,针对结核分枝杆菌H37Rv进行了体外抗结核活性评估。在测试的化合物中,5-硝基-1H-吲哚-2,3-二酮-3-硫代半卡巴腙(2p、2r和2s)及其1-吗啉甲基衍生物(4a、4e、4g和4i)在初筛中表现出显著的抑制活性。采用电子拓扑方法(ETM)研究了具有不同骨架的分子的抗结核活性。通过这种方法发现的10个药效团和10个反药效团构成了能够预测潜在活性化合物结构的系统的基础。该系统的预测能力已在与合成结构不同的结构上进行了测试。发现活性化合物正确识别的概率平均等于93%。为了获得活性预测的算法基础,在ETM之后使用了人工神经网络(所谓的组合ETM-ANN方法)。结果,仅选择了9个药效团和反药效团作为活性最重要的药效团。通过这种方式,人工神经网络正确分类了94.4%,即71个化合物中的67个。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验