Suppr超能文献

神经调质控制尖峰时间依赖性突触可塑性的极性。

Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity.

作者信息

Seol Geun Hee, Ziburkus Jokubas, Huang ShiYong, Song Lihua, Kim In Tae, Takamiya Kogo, Huganir Richard L, Lee Hey-Kyoung, Kirkwood Alfredo

机构信息

The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Neuron. 2007 Sep 20;55(6):919-29. doi: 10.1016/j.neuron.2007.08.013.

Abstract

Near coincidental pre- and postsynaptic action potentials induce associative long-term potentiation (LTP) or long-term depression (LTD), depending on the order of their timing. Here, we show that in visual cortex the rules of this spike-timing-dependent plasticity are not rigid, but shaped by neuromodulator receptors coupled to adenylyl cyclase (AC) and phospholipase C (PLC) signaling cascades. Activation of the AC and PLC cascades results in phosphorylation of postsynaptic glutamate receptors at sites that serve as specific "tags" for LTP and LTD. As a consequence, the outcome (i.e., whether LTP or LTD) of a given pattern of pre- and postsynaptic firing depends not only on the order of the timing, but also on the relative activation of neuromodulator receptors coupled to AC and PLC. These findings indicate that cholinergic and adrenergic neuromodulation associated with the behavioral state of the animal can control the gating and the polarity of cortical plasticity.

摘要

近乎同时发生的突触前和突触后动作电位会诱导关联性长期增强(LTP)或长期抑制(LTD),这取决于它们的时间顺序。在此,我们表明在视觉皮层中,这种依赖于尖峰时间的可塑性规则并非一成不变,而是由与腺苷酸环化酶(AC)和磷脂酶C(PLC)信号级联相关的神经调质受体塑造。AC和PLC级联的激活导致突触后谷氨酸受体在作为LTP和LTD特定“标签”的位点发生磷酸化。因此,给定的突触前和突触后放电模式的结果(即LTP还是LTD)不仅取决于时间顺序,还取决于与AC和PLC相关的神经调质受体的相对激活。这些发现表明,与动物行为状态相关的胆碱能和肾上腺素能神经调节可以控制皮层可塑性的门控和极性。

相似文献

1
Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity.
Neuron. 2007 Sep 20;55(6):919-29. doi: 10.1016/j.neuron.2007.08.013.
3
Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity.
J Physiol. 2008 Dec 15;586(24):5885-900. doi: 10.1113/jphysiol.2008.163469. Epub 2008 Oct 20.
4
Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
Cereb Cortex. 2016 Aug;26(8):3637-3654. doi: 10.1093/cercor/bhw172. Epub 2016 Jun 9.
5
Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca-Permeable AMPA Receptors.
J Neurosci. 2018 Mar 14;38(11):2863-2876. doi: 10.1523/JNEUROSCI.2362-17.2018. Epub 2018 Feb 13.
6
Associative Hebbian synaptic plasticity in primate visual cortex.
J Neurosci. 2014 May 28;34(22):7575-9. doi: 10.1523/JNEUROSCI.0983-14.2014.
7
Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex.
Neuron. 2000 Jul;27(1):45-56. doi: 10.1016/s0896-6273(00)00008-8.
8
Spine Ca2+ signaling in spike-timing-dependent plasticity.
J Neurosci. 2006 Oct 25;26(43):11001-13. doi: 10.1523/JNEUROSCI.1749-06.2006.
10
Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex.
J Neurosci. 2005 Dec 7;25(49):11433-43. doi: 10.1523/JNEUROSCI.4084-05.2005.

引用本文的文献

1
Resource-dependent heterosynaptic spike-timing-dependent plasticity in recurrent networks with and without synaptic degeneration.
Front Comput Neurosci. 2025 Jul 22;19:1593837. doi: 10.3389/fncom.2025.1593837. eCollection 2025.
2
Global error signal guides local optimization in mismatch calculation.
bioRxiv. 2025 Jul 10:2025.07.07.663505. doi: 10.1101/2025.07.07.663505.
3
Impact of symmetry in local learning rules on predictive neural representations and generalization in spatial navigation.
PLoS Comput Biol. 2025 Jun 23;21(6):e1013056. doi: 10.1371/journal.pcbi.1013056. eCollection 2025 Jun.
5
Investigation of neuromodulation of the endbulb of Held synapse in the cochlear nucleus by serotonin and norepinephrine.
Front Cell Neurosci. 2025 Apr 28;19:1575158. doi: 10.3389/fncel.2025.1575158. eCollection 2025.
6
Role of transcutaneous electrical nerve stimulation in alleviation of tinnitus in normal hearing subjects.
Eur Arch Otorhinolaryngol. 2025 Jan 17. doi: 10.1007/s00405-024-09182-y.
7
Brain-inspired learning rules for spiking neural network-based control: a tutorial.
Biomed Eng Lett. 2024 Dec 2;15(1):37-55. doi: 10.1007/s13534-024-00436-6. eCollection 2025 Jan.
8
The role of astrocytes from synaptic to non-synaptic plasticity.
Front Cell Neurosci. 2024 Oct 18;18:1477985. doi: 10.3389/fncel.2024.1477985. eCollection 2024.
10
Genetic mechanisms for impaired synaptic plasticity in schizophrenia revealed by computational modeling.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2312511121. doi: 10.1073/pnas.2312511121. Epub 2024 Aug 14.

本文引用的文献

3
Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1383-8. doi: 10.1073/pnas.0609596104. Epub 2007 Jan 16.
4
Spine Ca2+ signaling in spike-timing-dependent plasticity.
J Neurosci. 2006 Oct 25;26(43):11001-13. doi: 10.1523/JNEUROSCI.1749-06.2006.
5
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
J Neurosci. 2006 Oct 11;26(41):10420-9. doi: 10.1523/JNEUROSCI.2650-06.2006.
6
Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex.
J Neurosci. 2006 Oct 4;26(40):10209-21. doi: 10.1523/JNEUROSCI.3028-06.2006.
7
The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation.
J Neurosci. 2006 Jul 12;26(28):7395-404. doi: 10.1523/JNEUROSCI.0652-06.2006.
8
Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse.
J Neurosci. 2006 Jun 14;26(24):6610-7. doi: 10.1523/JNEUROSCI.5388-05.2006.
9
Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex.
J Neurosci. 2006 Apr 19;26(16):4166-77. doi: 10.1523/JNEUROSCI.0176-06.2006.
10
Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex.
J Neurosci. 2005 Dec 7;25(49):11433-43. doi: 10.1523/JNEUROSCI.4084-05.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验