Suppr超能文献

超越体内成熟的抗体亲和力改善的计算设计。

Computational design of antibody-affinity improvement beyond in vivo maturation.

作者信息

Lippow Shaun M, Wittrup K Dane, Tidor Bruce

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

Nat Biotechnol. 2007 Oct;25(10):1171-6. doi: 10.1038/nbt1336. Epub 2007 Sep 23.

Abstract

Antibodies are used extensively in diagnostics and as therapeutic agents. Achieving high-affinity binding is important for expanding detection limits, extending dissociation half-times, decreasing drug dosages and increasing drug efficacy. However, antibody-affinity maturation in vivo often fails to produce antibody drugs of the targeted potency, making further affinity maturation in vitro by directed evolution or computational design necessary. Here we present an iterative computational design procedure that focuses on electrostatic binding contributions and single mutants. By combining multiple designed mutations, a tenfold affinity improvement to 52 pM was engineered into the anti-epidermal growth factor receptor drug cetuximab (Erbitux), and a 140-fold improvement in affinity to 30 pM was obtained for the anti-lysozyme model antibody D44.1. The generality of the methods was further demonstrated through identification of known affinity-enhancing mutations in the therapeutic antibody bevacizumab (Avastin) and the model anti-fluorescein antibody 4-4-20. These results demonstrate computational capabilities for enhancing and accelerating the development of protein reagents and therapeutics.

摘要

抗体在诊断和治疗中有着广泛应用。实现高亲和力结合对于扩大检测限、延长解离半衰期、降低药物剂量以及提高药物疗效至关重要。然而,体内抗体亲和力成熟往往无法产生具有靶向效力的抗体药物,因此有必要通过定向进化或计算设计在体外进一步提高亲和力。在此,我们提出一种迭代计算设计程序,该程序聚焦于静电结合作用和单个突变体。通过组合多个设计突变,抗表皮生长因子受体药物西妥昔单抗(爱必妥)的亲和力提高了10倍,达到52皮摩尔;抗溶菌酶模型抗体D44.1的亲和力提高了140倍,达到30皮摩尔。通过鉴定治疗性抗体贝伐单抗(安维汀)和模型抗荧光素抗体4-4-20中已知的亲和力增强突变,进一步证明了这些方法的通用性。这些结果展示了计算在增强和加速蛋白质试剂及治疗药物开发方面的能力。

相似文献

1
Computational design of antibody-affinity improvement beyond in vivo maturation.
Nat Biotechnol. 2007 Oct;25(10):1171-6. doi: 10.1038/nbt1336. Epub 2007 Sep 23.
3
OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.
PLoS One. 2014 Aug 25;9(8):e105954. doi: 10.1371/journal.pone.0105954. eCollection 2014.
4
Antibody Affinity Maturation by Computational Design.
Methods Mol Biol. 2018;1827:15-34. doi: 10.1007/978-1-4939-8648-4_2.
5
Experimentally guided computational antibody affinity maturation with de novo docking, modelling and rational design.
PLoS Comput Biol. 2019 May 1;15(5):e1006980. doi: 10.1371/journal.pcbi.1006980. eCollection 2019 May.
8
mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures.
Nucleic Acids Res. 2016 Jul 8;44(W1):W469-73. doi: 10.1093/nar/gkw458. Epub 2016 May 23.
9
Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities.
J Chem Inf Model. 2016 Jul 25;56(7):1292-303. doi: 10.1021/acs.jcim.6b00043. Epub 2016 Jul 14.

引用本文的文献

1
Applying computational protein design to therapeutic antibody discovery - current state and perspectives.
Front Immunol. 2025 May 22;16:1571371. doi: 10.3389/fimmu.2025.1571371. eCollection 2025.
7
AntiFormer: graph enhanced large language model for binding affinity prediction.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae403.
8
An in silico investigation on the binding site preference of PD-1 and PD-L1 for designing antibodies for targeted cancer therapy.
PLoS One. 2024 Jul 25;19(7):e0304270. doi: 10.1371/journal.pone.0304270. eCollection 2024.
9
Accurate prediction of CDR-H3 loop structures of antibodies with deep learning.
Elife. 2024 Jun 26;12:RP91512. doi: 10.7554/eLife.91512.
10
Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen.
MAbs. 2024 Jan-Dec;16(1):2362775. doi: 10.1080/19420862.2024.2362775. Epub 2024 Jun 20.

本文引用的文献

1
Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface.
J Mol Biol. 2006 Aug 4;361(1):195-208. doi: 10.1016/j.jmb.2006.05.022. Epub 2006 May 24.
2
Computational redesign of endonuclease DNA binding and cleavage specificity.
Nature. 2006 Jun 1;441(7093):656-9. doi: 10.1038/nature04818.
3
Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8331-6. doi: 10.1073/pnas.0600118103. Epub 2006 May 18.
4
Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design.
Protein Sci. 2006 May;15(5):949-60. doi: 10.1110/ps.052030506. Epub 2006 Apr 5.
5
Recapitulation and design of protein binding peptide structures and sequences.
J Mol Biol. 2006 Mar 31;357(3):917-27. doi: 10.1016/j.jmb.2006.01.045. Epub 2006 Jan 31.
9
Specificity versus stability in computational protein design.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12724-9. doi: 10.1073/pnas.0506124102. Epub 2005 Aug 29.
10
Computational thermostabilization of an enzyme.
Science. 2005 May 6;308(5723):857-60. doi: 10.1126/science.1107387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验