Suppr超能文献

通过CusF中阳离子-π相互作用和甲硫氨酸相互作用实现的Cu(I)识别

Cu(I) recognition via cation-pi and methionine interactions in CusF.

作者信息

Xue Yi, Davis Anna V, Balakrishnan Gurusamy, Stasser Jay P, Staehlin Benjamin M, Focia Pamela, Spiro Thomas G, Penner-Hahn James E, O'Halloran Thomas V

机构信息

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

出版信息

Nat Chem Biol. 2008 Feb;4(2):107-9. doi: 10.1038/nchembio.2007.57. Epub 2007 Dec 23.

Abstract

Methionine-rich motifs have an important role in copper trafficking factors, including the CusF protein. Here we show that CusF uses a new metal recognition site wherein Cu(I) is tetragonally displaced from a Met2His ligand plane toward a conserved tryptophan. Spectroscopic studies demonstrate that both thioether ligation and strong cation-pi interactions with tryptophan stabilize metal binding. This novel active site chemistry affords mechanisms for control of adventitious metal redox and substitution chemistry.

摘要

富含甲硫氨酸的基序在包括CusF蛋白在内的铜转运因子中发挥着重要作用。在此我们表明,CusF利用了一个新的金属识别位点,其中Cu(I)从一个Met2His配体平面沿四方方向朝着一个保守的色氨酸位移。光谱研究表明,硫醚配位以及与色氨酸的强阳离子-π相互作用均能稳定金属结合。这种新型活性位点化学为控制偶然金属的氧化还原和取代化学提供了机制。

相似文献

1
Cu(I) recognition via cation-pi and methionine interactions in CusF.
Nat Chem Biol. 2008 Feb;4(2):107-9. doi: 10.1038/nchembio.2007.57. Epub 2007 Dec 23.
3
Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF.
J Biol Inorg Chem. 2009 Aug;14(6):905-12. doi: 10.1007/s00775-009-0503-y. Epub 2009 Apr 21.
4
Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF.
J Am Chem Soc. 2011 Dec 7;133(48):19330-3. doi: 10.1021/ja208662z. Epub 2011 Nov 10.
5
Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
J Biol Chem. 2014 Jul 25;289(30):20492-501. doi: 10.1074/jbc.M114.577668. Epub 2014 Jun 10.
7
Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF.
Biochemistry. 2015 Jul 14;54(27):4226-35. doi: 10.1021/acs.biochem.5b00195. Epub 2015 Jul 2.
9
Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.
Biochemistry. 2008 Nov 4;47(44):11408-14. doi: 10.1021/bi801638m. Epub 2008 Oct 11.
10

引用本文的文献

1
Biomimetic Pseudopeptides to Decipher the Interplay between Cu and Methionine-Rich Domains in Proteins.
Chemistry. 2025 Feb 20;31(11):e202403896. doi: 10.1002/chem.202403896. Epub 2025 Jan 9.
3
Genetically encoded bioorthogonal tryptophan decaging in living cells.
Nat Chem. 2024 Apr;16(4):533-542. doi: 10.1038/s41557-024-01463-7. Epub 2024 Feb 28.
5
Important Structural Features of Thiolate-Rich Four-Helix Bundles for Cu(I) Uptake and Removal.
Inorg Chem. 2023 May 1;62(17):6617-6628. doi: 10.1021/acs.inorgchem.2c04490. Epub 2023 Apr 14.
6
A reinforcement learning approach for protein-ligand binding pose prediction.
BMC Bioinformatics. 2022 Sep 8;23(1):368. doi: 10.1186/s12859-022-04912-7.
7
Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF.
PLoS Genet. 2022 Jul 11;18(7):e1010180. doi: 10.1371/journal.pgen.1010180. eCollection 2022 Jul.
8
Mining anion-aromatic interactions in the Protein Data Bank.
Chem Sci. 2022 Mar 1;13(14):3984-3998. doi: 10.1039/d2sc00763k. eCollection 2022 Apr 6.
9
Copper monooxygenase reactivity: Do consensus mechanisms accurately reflect experimental observations?
J Inorg Biochem. 2022 Jun;231:111780. doi: 10.1016/j.jinorgbio.2022.111780. Epub 2022 Feb 28.
10
Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site.
PLoS Biol. 2021 Nov 11;19(11):e3001446. doi: 10.1371/journal.pbio.3001446. eCollection 2021 Nov.

本文引用的文献

2
4
A novel copper-binding fold for the periplasmic copper resistance protein CusF.
Biochemistry. 2005 Aug 9;44(31):10533-40. doi: 10.1021/bi050827b.
5
A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):3994-9. doi: 10.1073/pnas.0406150102. Epub 2005 Mar 7.
6
Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli.
J Bacteriol. 2003 Jul;185(13):3804-12. doi: 10.1128/JB.185.13.3804-3812.2003.
7
Transition metal speciation in the cell: insights from the chemistry of metal ion receptors.
Science. 2003 May 9;300(5621):931-6. doi: 10.1126/science.1085049.
8
A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites.
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3814-9. doi: 10.1073/pnas.0636904100. Epub 2003 Mar 21.
9
The PcoC copper resistance protein coordinates Cu(I) via novel S-methionine interactions.
J Am Chem Soc. 2003 Jan 15;125(2):342-3. doi: 10.1021/ja028935y.
10
The Cationminus signpi Interaction.
Chem Rev. 1997 Aug 5;97(5):1303-1324. doi: 10.1021/cr9603744.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验