Bingel-Erlenmeyer Rouven, Kohler Rebecca, Kramer Günter, Sandikci Arzu, Antolić Snjezana, Maier Timm, Schaffitzel Christiane, Wiedmann Brigitte, Bukau Bernd, Ban Nenad
Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
Nature. 2008 Mar 6;452(7183):108-11. doi: 10.1038/nature06683. Epub 2008 Feb 20.
Messenger-RNA-directed protein synthesis is accomplished by the ribosome. In eubacteria, this complex process is initiated by a specialized transfer RNA charged with formylmethionine (tRNA(fMet)). The amino-terminal formylated methionine of all bacterial nascent polypeptides blocks the reactive amino group to prevent unfavourable side-reactions and to enhance the efficiency of translation initiation. The first enzymatic factor that processes nascent chains is peptide deformylase (PDF); it removes this formyl group as polypeptides emerge from the ribosomal tunnel and before the newly synthesized proteins can adopt their native fold, which may bury the N terminus. Next, the N-terminal methionine is excised by methionine aminopeptidase. Bacterial PDFs are metalloproteases sharing a conserved N-terminal catalytic domain. All Gram-negative bacteria, including Escherichia coli, possess class-1 PDFs characterized by a carboxy-terminal alpha-helical extension. Studies focusing on PDF as a target for antibacterial drugs have not revealed the mechanism of its co-translational mode of action despite indications in early work that it co-purifies with ribosomes. Here we provide biochemical evidence that E. coli PDF interacts directly with the ribosome via its C-terminal extension. Crystallographic analysis of the complex between the ribosome-interacting helix of PDF and the ribosome at 3.7 A resolution reveals that the enzyme orients its active site towards the ribosomal tunnel exit for efficient co-translational processing of emerging nascent chains. Furthermore, we have found that the interaction of PDF with the ribosome enhances cell viability. These results provide the structural basis for understanding the coupling between protein synthesis and enzymatic processing of nascent chains, and offer insights into the interplay of PDF with the ribosome-associated chaperone trigger factor.
信使核糖核酸(mRNA)指导的蛋白质合成是由核糖体完成的。在真细菌中,这一复杂过程由一种携带甲酰甲硫氨酸的特殊转运RNA(tRNA(fMet))启动。所有细菌新生多肽的氨基末端甲酰化甲硫氨酸会阻断反应性氨基,以防止不利的副反应并提高翻译起始效率。处理新生肽链的第一个酶因子是肽脱甲酰基酶(PDF);当多肽从核糖体通道中出现且新合成的蛋白质尚未形成天然折叠(这可能会掩埋N端)之前,它会去除这个甲酰基。接下来,N端甲硫氨酸由甲硫氨酸氨肽酶切除。细菌PDF是具有保守N端催化结构域的金属蛋白酶。所有革兰氏阴性菌,包括大肠杆菌,都拥有以羧基末端α螺旋延伸为特征的1类PDF。尽管早期研究表明PDF与核糖体共纯化,但针对PDF作为抗菌药物靶点的研究尚未揭示其共翻译作用模式的机制。在这里,我们提供了生化证据,表明大肠杆菌PDF通过其C端延伸与核糖体直接相互作用。以3.7埃分辨率对PDF与核糖体相互作用的螺旋和核糖体之间的复合物进行晶体学分析表明,该酶将其活性位点朝向核糖体通道出口,以便对新出现的新生肽链进行有效的共翻译加工。此外,我们发现PDF与核糖体的相互作用增强了细胞活力。这些结果为理解蛋白质合成与新生肽链酶促加工之间的偶联提供了结构基础,并为PDF与核糖体相关伴侣触发因子之间的相互作用提供了见解。