Suppr超能文献

用磷酸丝氨酸对tRNA进行氨酰化以合成半胱氨酰-tRNA(Cys)。

Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys).

作者信息

Zhang Chun-Mei, Liu Cuiping, Slater Simon, Hou Ya-Ming

机构信息

Department of Biochemistry and Molecular Biology, 233 South 10th Street, Philadelphia, Pennsylvania 19107, USA.

出版信息

Nat Struct Mol Biol. 2008 May;15(5):507-14. doi: 10.1038/nsmb.1423. Epub 2008 Apr 20.

Abstract

Cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) is required for translation and is typically synthesized by cysteinyl-tRNA synthetase (CysRS). However, Methanocaldococcus jannaschii synthesizes Cys-tRNA(Cys) by an indirect pathway, whereby O-phosphoseryl-tRNA synthetase (SepRS) acylates tRNA(Cys) with phosphoserine (Sep), and Sep-tRNA-Cys-tRNA synthase (SepCysS) converts the tRNA-bound phosphoserine to cysteine. We show here that M. jannaschii SepRS differs from CysRS by recruiting the m1G37 modification as a determinant for aminoacylation, and in showing limited discrimination against mutations of conserved nucleotides. Kinetic and binding measurements show that both SepRS and SepCysS bind the reaction intermediate Sep-tRNA(Cys) tightly, and these two enzymes form a stable binary complex that promotes conversion of the intermediate to the product and sequesters the intermediate from binding to elongation factor EF-1alpha or infiltrating into the ribosome. These results highlight the importance of the protein binary complex for efficient synthesis of Cys-tRNA(Cys).

摘要

半胱氨酰 - tRNA(Cys)(Cys - tRNA(Cys))是翻译所必需的,通常由半胱氨酰 - tRNA合成酶(CysRS)合成。然而,詹氏甲烷球菌通过间接途径合成Cys - tRNA(Cys),即O - 磷酸丝氨酰 - tRNA合成酶(SepRS)用磷酸丝氨酸(Sep)使tRNA(Cys)酰化,而Sep - tRNA - Cys - tRNA合成酶(SepCysS)将与tRNA结合的磷酸丝氨酸转化为半胱氨酸。我们在此表明,詹氏甲烷球菌SepRS与CysRS不同,它招募m1G37修饰作为氨酰化的决定因素,并且对保守核苷酸的突变显示出有限的辨别能力。动力学和结合测量表明,SepRS和SepCysS都紧密结合反应中间体Sep - tRNA(Cys),并且这两种酶形成稳定的二元复合物,该复合物促进中间体转化为产物,并使中间体不与延伸因子EF - 1α结合或渗入核糖体。这些结果突出了蛋白质二元复合物对高效合成Cys - tRNA(Cys)的重要性。

相似文献

1
Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys).
Nat Struct Mol Biol. 2008 May;15(5):507-14. doi: 10.1038/nsmb.1423. Epub 2008 Apr 20.
2
Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei.
J Biol Chem. 2008 Aug 8;283(32):22007-17. doi: 10.1074/jbc.M801839200. Epub 2008 Jun 17.
3
RNA-dependent cysteine biosynthesis in archaea.
Science. 2005 Mar 25;307(5717):1969-72. doi: 10.1126/science.1108329.
4
RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
mBio. 2017 May 9;8(3):e00561-17. doi: 10.1128/mBio.00561-17.
5
Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNA(Cys) synthesis.
Acta Crystallogr F Struct Biol Commun. 2016 Jul;72(Pt 7):569-72. doi: 10.1107/S2053230X16009559. Epub 2016 Jun 28.
6
Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems.
Front Genet. 2022 Jan 3;12:794509. doi: 10.3389/fgene.2021.794509. eCollection 2021.
7
Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is still unknown.
J Bacteriol. 2004 Jan;186(1):8-14. doi: 10.1128/JB.186.1.8-14.2004.
8
Emergence of the universal genetic code imprinted in an RNA record.
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18095-100. doi: 10.1073/pnas.0608762103. Epub 2006 Nov 16.
9
Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.
J Biol Chem. 2012 Feb 17;287(8):5426-33. doi: 10.1074/jbc.M111.313700. Epub 2011 Dec 13.

引用本文的文献

1
Investigations of Single-Subunit tRNA Methyltransferases from Yeast.
J Fungi (Basel). 2023 Oct 19;9(10):1030. doi: 10.3390/jof9101030.
2
The tRNA identity landscape for aminoacylation and beyond.
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.
3
Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems.
Front Genet. 2022 Jan 3;12:794509. doi: 10.3389/fgene.2021.794509. eCollection 2021.
4
Evolutionary repair reveals an unexpected role of the tRNA modification m1G37 in aminoacylation.
Nucleic Acids Res. 2021 Dec 2;49(21):12467-12485. doi: 10.1093/nar/gkab1067.
5
The mammalian mitochondrial epitranscriptome.
Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):429-446. doi: 10.1016/j.bbagrm.2018.11.005. Epub 2018 Dec 4.
6
Effects of Heterologous tRNA Modifications on the Production of Proteins Containing Noncanonical Amino Acids.
Bioengineering (Basel). 2018 Feb 2;5(1):11. doi: 10.3390/bioengineering5010011.
7
Structural basis for tRNA-dependent cysteine biosynthesis.
Nat Commun. 2017 Nov 15;8(1):1521. doi: 10.1038/s41467-017-01543-y.
8
RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
mBio. 2017 May 9;8(3):e00561-17. doi: 10.1128/mBio.00561-17.
10
The central role of tRNA in genetic code expansion.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt B):3001-3008. doi: 10.1016/j.bbagen.2017.03.012. Epub 2017 Mar 18.

本文引用的文献

2
Question 6: coevolution theory of the genetic code: a proven theory.
Orig Life Evol Biosph. 2007 Oct;37(4-5):403-8. doi: 10.1007/s11084-007-9094-1. Epub 2007 Jul 5.
4
Exploring the specificity of bacterial elongation factor Tu for different tRNAs.
Biochemistry. 2007 May 29;46(21):6194-200. doi: 10.1021/bi602548v. Epub 2007 May 10.
5
The structure of a plant photosystem I supercomplex at 3.4 A resolution.
Nature. 2007 May 3;447(7140):58-63. doi: 10.1038/nature05687.
6
Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea.
Nat Struct Mol Biol. 2007 Apr;14(4):272-9. doi: 10.1038/nsmb1219. Epub 2007 Mar 11.
8
Kinetic quality control of anticodon recognition by a eukaryotic aminoacyl-tRNA synthetase.
J Mol Biol. 2007 Apr 6;367(4):1063-78. doi: 10.1016/j.jmb.2007.01.050. Epub 2007 Jan 24.
9
Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2620-5. doi: 10.1073/pnas.0611504104. Epub 2007 Feb 14.
10
RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18923-7. doi: 10.1073/pnas.0609703104. Epub 2006 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验