Suppr超能文献

通过MRI的高维模式分类对个体患者进行阿尔茨海默病和额颞叶痴呆的诊断。

Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI.

作者信息

Davatzikos C, Resnick S M, Wu X, Parmpi P, Clark C M

机构信息

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, 3600 Market street, Suite 380, Philadelphia, PA 19104, USA.

出版信息

Neuroimage. 2008 Jul 15;41(4):1220-7. doi: 10.1016/j.neuroimage.2008.03.050. Epub 2008 Apr 8.

Abstract

The purpose of this study is to determine the diagnostic accuracy of MRI-based high-dimensional pattern classification in differentiating between patients with Alzheimer's disease (AD), Frontotemporal Dementia (FTD), and healthy controls, on an individual patient basis. MRI scans of 37 patients with AD and 37 age-matched cognitively normal elderly individuals, as well as 12 patients with FTD and 12 age-matched cognitively normal elderly individuals, were analyzed using voxel-based analysis and high-dimensional pattern classification. Diagnostic sensitivity and specificity of spatial patterns of regional brain atrophy found to be characteristic of AD and FTD were determined via cross-validation and via split-sample methods. Complex spatial patterns of relatively reduced brain volumes were identified, including temporal, orbitofrontal, parietal and cingulate regions, which were predominantly characteristic of either AD or FTD. These patterns provided 100% diagnostic accuracy, when used to separate AD or FTD from healthy controls. The ability to correctly distinguish AD from FTD averaged 84.3%. All estimates of diagnostic accuracy were determined via cross-validation. In conclusion, AD- and FTD-specific patterns of brain atrophy can be detected with high accuracy using high-dimensional pattern classification of MRI scans obtained in a typical clinical setting.

摘要

本研究的目的是在个体患者层面上,确定基于MRI的高维模式分类在区分阿尔茨海默病(AD)患者、额颞叶痴呆(FTD)患者和健康对照方面的诊断准确性。使用基于体素的分析和高维模式分类方法,对37例AD患者、37例年龄匹配的认知正常老年人、12例FTD患者以及12例年龄匹配的认知正常老年人的MRI扫描图像进行了分析。通过交叉验证和分割样本方法,确定了发现的AD和FTD特征性区域脑萎缩空间模式的诊断敏感性和特异性。识别出了相对脑容量减少的复杂空间模式,包括颞叶、眶额叶、顶叶和扣带区域,这些区域主要是AD或FTD的特征。当用于将AD或FTD与健康对照区分开时,这些模式提供了100%的诊断准确性。正确区分AD和FTD的能力平均为84.3%。所有诊断准确性估计均通过交叉验证确定。总之,使用在典型临床环境中获得的MRI扫描的高维模式分类,可以高精度地检测出AD和FTD特异性的脑萎缩模式。

相似文献

1
Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI.
Neuroimage. 2008 Jul 15;41(4):1220-7. doi: 10.1016/j.neuroimage.2008.03.050. Epub 2008 Apr 8.
2
Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI.
Neurology. 2006 Oct 10;67(7):1215-20. doi: 10.1212/01.wnl.0000238163.71349.78.
3
Topographical patterns of lobar atrophy in frontotemporal dementia and Alzheimer's disease.
Dement Geriatr Cogn Disord. 2006;21(5-6):364-72. doi: 10.1159/000091838. Epub 2006 Mar 3.
4
Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia.
Brain. 2007 Apr;130(Pt 4):1159-66. doi: 10.1093/brain/awm016. Epub 2007 Mar 12.
9
10
White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI.
Brain. 2009 Sep;132(Pt 9):2579-92. doi: 10.1093/brain/awp071. Epub 2009 May 12.

引用本文的文献

1
Privacy-preserving dementia classification from EEG via hybrid-fusion EEGNetv4 and federated learning.
Front Comput Neurosci. 2025 Aug 18;19:1617883. doi: 10.3389/fncom.2025.1617883. eCollection 2025.
2
The Dementia SomaSignal Test (dSST): A plasma proteomic predictor of 20-year dementia risk.
Alzheimers Dement. 2025 Feb;21(2):e14549. doi: 10.1002/alz.14549. Epub 2025 Feb 12.
6
Proteomic analyses reveal plasma EFEMP1 and CXCL12 as biomarkers and determinants of neurodegeneration.
Alzheimers Dement. 2024 Sep;20(9):6486-6505. doi: 10.1002/alz.14142. Epub 2024 Aug 11.
7
Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia.
Artif Intell Med. 2023 Oct;144:102636. doi: 10.1016/j.artmed.2023.102636. Epub 2023 Aug 18.
10
Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer's disease.
Front Aging Neurosci. 2022 Jul 28;14:964336. doi: 10.3389/fnagi.2022.964336. eCollection 2022.

本文引用的文献

1
Automatic classification of MR scans in Alzheimer's disease.
Brain. 2008 Mar;131(Pt 3):681-9. doi: 10.1093/brain/awm319. Epub 2008 Jan 17.
2
Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies.
Neuroimage. 2008 Feb 1;39(3):1186-97. doi: 10.1016/j.neuroimage.2007.09.073. Epub 2007 Oct 22.
4
FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease.
Brain. 2007 Oct;130(Pt 10):2616-35. doi: 10.1093/brain/awm177. Epub 2007 Aug 18.
5
Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia.
Brain. 2007 Apr;130(Pt 4):1159-66. doi: 10.1093/brain/awm016. Epub 2007 Mar 12.
6
COMPARE: classification of morphological patterns using adaptive regional elements.
IEEE Trans Med Imaging. 2007 Jan;26(1):93-105. doi: 10.1109/TMI.2006.886812.
7
Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging.
Neurobiol Aging. 2008 Apr;29(4):514-23. doi: 10.1016/j.neurobiolaging.2006.11.010. Epub 2006 Dec 14.
8
Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls.
Neurobiol Aging. 2008 Jan;29(1):23-30. doi: 10.1016/j.neurobiolaging.2006.09.013. Epub 2006 Nov 13.
10
Frontotemporal dementia: clinicopathological correlations.
Ann Neurol. 2006 Jun;59(6):952-62. doi: 10.1002/ana.20873.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验