Suppr超能文献

影响视网膜前假体感知阈值的因素。

Factors affecting perceptual thresholds in epiretinal prostheses.

作者信息

de Balthasar Chloé, Patel Sweta, Roy Arup, Freda Ricardo, Greenwald Scott, Horsager Alan, Mahadevappa Manjunatha, Yanai Douglas, McMahon Matthew J, Humayun Mark S, Greenberg Robert J, Weiland James D, Fine Ione

机构信息

Department of Ophthalmology and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.

出版信息

Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2303-14. doi: 10.1167/iovs.07-0696.

Abstract

PURPOSE

The goal was to evaluate how perceptual thresholds are related to electrode impedance, electrode size, the distance of electrodes from the retinal surface, and retinal thickness in six subjects blind as a result of retinitis pigmentosa, who received epiretinal prostheses implanted monocularly as part of a U.S. Food and Drug Administration (FDA)-approved clinical trial.

METHODS

The implant consisted of an extraocular unit containing electronics for wireless data, power recovery, and generation of stimulus current, and an intraocular unit containing 16 platinum stimulating electrodes (260- or 520-microm diameter) arranged in a 4 x 4 pattern. The electrode array was held onto the retina by a small tack. Stimulation was controlled by a computer-based external system that allowed independent control over each electrode. Perceptual thresholds (the current necessary to see a percept on 79% of trials) and impedance were measured for each electrode on a biweekly basis. The distance of electrodes from the retinal surface and retinal thickness were measured by optical coherence tomography on a less regular basis.

RESULTS

Stimulation thresholds for detecting phosphenes correlated with the distance of the electrodes from the retinal surface, but not with electrode size, electrode impedance, or retinal thickness.

CONCLUSIONS

Maintaining close proximity between the electrode array and the retinal surface is critical in developing a successful retinal implant. With the development of chronic electrode arrays that are stable and flush on the retinal surface, it is likely that the influence of other factors such as electrode size, retinal degeneration, and subject age will become more apparent. (ClinicalTrials.gov number, NCT00279500.).

摘要

目的

目标是评估在6名因色素性视网膜炎而失明的受试者中,感知阈值与电极阻抗、电极尺寸、电极与视网膜表面的距离以及视网膜厚度之间的关系。这些受试者作为美国食品药品监督管理局(FDA)批准的一项临床试验的一部分,单眼植入了视网膜外假体。

方法

该植入物包括一个眼外单元,其包含用于无线数据、能量回收和刺激电流生成的电子设备,以及一个眼内单元,该眼内单元包含以4×4模式排列的16个铂刺激电极(直径为260或520微米)。电极阵列通过一个小钉固定在视网膜上。刺激由基于计算机的外部系统控制,该系统允许对每个电极进行独立控制。每两周测量一次每个电极的感知阈值(在79%的试验中看到感知所需的电流)和阻抗。电极与视网膜表面的距离和视网膜厚度通过光学相干断层扫描不定期测量。

结果

检测光幻视的刺激阈值与电极离视网膜表面的距离相关,但与电极尺寸、电极阻抗或视网膜厚度无关。

结论

在开发成功的视网膜植入物时,保持电极阵列与视网膜表面紧密接近至关重要。随着稳定且与视网膜表面齐平的慢性电极阵列的发展,电极尺寸、视网膜变性和受试者年龄等其他因素的影响可能会变得更加明显。(ClinicalTrials.gov编号,NCT00279500。)

相似文献

1
Factors affecting perceptual thresholds in epiretinal prostheses.
Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2303-14. doi: 10.1167/iovs.07-0696.
2
Perceptual thresholds and electrode impedance in three retinal prosthesis subjects.
IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):201-6. doi: 10.1109/TNSRE.2005.848687.
3
Spatiotemporal interactions in retinal prosthesis subjects.
Invest Ophthalmol Vis Sci. 2010 Feb;51(2):1223-33. doi: 10.1167/iovs.09-3746. Epub 2009 Sep 9.
4
Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis.
Invest Ophthalmol Vis Sci. 2014 Sep 9;55(10):6467-81. doi: 10.1167/iovs.14-14396.
5
Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects.
Invest Ophthalmol Vis Sci. 2011 Feb 1;52(1):549-57. doi: 10.1167/iovs.10-5282. Print 2011 Jan.
6
Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans.
Invest Ophthalmol Vis Sci. 2011 Jan 21;52(1):449-55. doi: 10.1167/iovs.09-4410.
7
Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.
Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5355-61. doi: 10.1167/iovs.02-0819.
9
Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant.
Arch Ophthalmol. 2009 Apr;127(4):398-401. doi: 10.1001/archophthalmol.2009.20.
10
Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation.
Invest Ophthalmol Vis Sci. 2012 Jan 20;53(1):205-14. doi: 10.1167/iovs.11-8401.

引用本文的文献

2
Machine Learning Techniques for Simulating Human Psychophysical Testing of Low-Resolution Phosphene Face Images in Artificial Vision.
Adv Sci (Weinh). 2025 Apr;12(15):e2405789. doi: 10.1002/advs.202405789. Epub 2025 Feb 22.
3
Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
J Neural Eng. 2024 Apr 8;21(2):026031. doi: 10.1088/1741-2552/ad31c4.
4
Explainable machine learning predictions of perceptual sensitivity for retinal prostheses.
J Neural Eng. 2024 Mar 19;21(2). doi: 10.1088/1741-2552/ad310f.
5
Effect of epiretinal electrical stimulation on the glial cells in a rabbit retinal eyecup model.
Front Neurosci. 2024 Jan 22;18:1290829. doi: 10.3389/fnins.2024.1290829. eCollection 2024.
6
Patient-specific computational models of retinal prostheses.
Sci Rep. 2023 Dec 14;13(1):22271. doi: 10.1038/s41598-023-49580-6.
7
Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
medRxiv. 2023 Dec 26:2023.07.21.23292908. doi: 10.1101/2023.07.21.23292908.
8
Factors affecting two-point discrimination in Argus II patients.
Front Neurosci. 2022 Aug 24;16:901337. doi: 10.3389/fnins.2022.901337. eCollection 2022.

本文引用的文献

1
Retinal nerve fiber layer defects in RP patients.
Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4748-52. doi: 10.1167/iovs.07-0404.
2
ENERGY AT THE THRESHOLD OF VISION.
Science. 1941 Jun 20;93(2425):585-7. doi: 10.1126/science.93.2425.585.
3
Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa.
Am J Ophthalmol. 2007 May;143(5):820-827. doi: 10.1016/j.ajo.2007.01.027. Epub 2007 Mar 23.
4
Optoelectronic retinal prosthesis: system design and performance.
J Neural Eng. 2007 Mar;4(1):S72-84. doi: 10.1088/1741-2560/4/1/S09. Epub 2007 Feb 26.
5
Electrical properties of retinal-electrode interface.
J Neural Eng. 2007 Mar;4(1):S24-9. doi: 10.1088/1741-2560/4/1/S04. Epub 2007 Feb 20.
6
The development of a multichannel electrode array for retinal prostheses.
J Artif Organs. 2006;9(4):263-6. doi: 10.1007/s10047-006-0352-1. Epub 2006 Dec 21.
8
Retinal assessment using optical coherence tomography.
Prog Retin Eye Res. 2006 May;25(3):325-53. doi: 10.1016/j.preteyeres.2006.03.001. Epub 2006 May 22.
9
Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
J Neurophysiol. 2006 Jun;95(6):3311-27. doi: 10.1152/jn.01168.2005. Epub 2006 Jan 25.
10
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Ophthalmology. 2005 Oct;112(10):1734-46. doi: 10.1016/j.ophtha.2005.05.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验