Suppr超能文献

周质蛋白之间的直接金属转移鉴定出一种细菌铜伴侣蛋白。

Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.

作者信息

Bagai Ireena, Rensing Christopher, Blackburn Ninian J, McEvoy Megan M

机构信息

Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

Biochemistry. 2008 Nov 4;47(44):11408-14. doi: 10.1021/bi801638m. Epub 2008 Oct 11.

Abstract

Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is required in only small amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the Escherichia coli Cu(I)/Ag(I) efflux system undergo a metal-dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homologue of CusF with a 51% identical sequence and a similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage.

摘要

过渡金属在细胞内需要精细处理,以确保细胞不会受到过量游离金属物种的伤害。在革兰氏阴性菌中,周质中仅需要少量铜,细胞质中则不需要,因此在金属过量条件下保护细胞的一个关键方面是将铜从周质中输出。周质伴侣蛋白可以提供额外保护,在铜输出之前限制游离金属物种。通过等温滴定量热法,我们证明了大肠杆菌铜(I)/银(I)外排系统的两种周质蛋白CusF和CusB会发生金属依赖性相互作用。通过开发一种使用硒代甲硫氨酸标记来区分这两种蛋白质金属位点的新型X射线吸收光谱方法,我们证明了铜(I)在CusF和CusB之间发生转移。这些蛋白质之间的相互作用具有高度特异性,因为与CusF具有51%相同序列且对金属具有相似亲和力的同源物在金属转移中不起作用。这些实验确定了CusF在革兰氏阴性菌周质中的金属伴侣活性,有助于保护周质免受金属介导的损伤。

相似文献

1
Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.
Biochemistry. 2008 Nov 4;47(44):11408-14. doi: 10.1021/bi801638m. Epub 2008 Oct 11.
2
Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
J Biol Chem. 2014 Jul 25;289(30):20492-501. doi: 10.1074/jbc.M114.577668. Epub 2014 Jun 10.
3
4
Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.
J Biol Chem. 2007 Dec 7;282(49):35695-702. doi: 10.1074/jbc.M703937200. Epub 2007 Sep 24.
5
Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF.
J Am Chem Soc. 2011 Dec 7;133(48):19330-3. doi: 10.1021/ja208662z. Epub 2011 Nov 10.
7
Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15373-8. doi: 10.1073/pnas.1411475111. Epub 2014 Oct 13.
8
Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli.
J Bacteriol. 2003 Jul;185(13):3804-12. doi: 10.1128/JB.185.13.3804-3812.2003.
9
N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF.
Biochemistry. 2012 Aug 28;51(34):6767-75. doi: 10.1021/bi300596a. Epub 2012 Aug 17.
10
Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF.
J Biol Inorg Chem. 2009 Aug;14(6):905-12. doi: 10.1007/s00775-009-0503-y. Epub 2009 Apr 21.

引用本文的文献

1
Copper acquisition in Bacillus subtilis involves Cu(II) exchange between YcnI and YcnJ.
J Biol Chem. 2025 Jul 14;301(8):110480. doi: 10.1016/j.jbc.2025.110480.
5
Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0056723. doi: 10.1128/aem.00567-23. Epub 2023 May 16.
6
Copper Binding and Oligomerization Studies of the Metal Resistance Determinant CrdA from .
Molecules. 2022 May 24;27(11):3387. doi: 10.3390/molecules27113387.
7
NMR reveals the interplay between SilE and SilB model peptides in the context of silver resistance.
Chem Commun (Camb). 2021 Sep 11;57(70):8726-8729. doi: 10.1039/d1cc02597j. Epub 2021 Aug 16.
8
Bacterial Metal Resistance: Coping with Copper without Cooperativity?
mBio. 2021 Jun 29;12(3):e0065321. doi: 10.1128/mBio.00653-21. Epub 2021 Jun 15.
9
Cobalt Resistance via Detoxification and Mineralization in the Iron-Reducing Bacterium .
Front Microbiol. 2020 Nov 26;11:600463. doi: 10.3389/fmicb.2020.600463. eCollection 2020.
10
Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump.
Front Mol Biosci. 2020 Jul 21;7:166. doi: 10.3389/fmolb.2020.00166. eCollection 2020.

本文引用的文献

1
Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):5992-7. doi: 10.1073/pnas.0711446105. Epub 2008 Apr 15.
2
Cu(I) recognition via cation-pi and methionine interactions in CusF.
Nat Chem Biol. 2008 Feb;4(2):107-9. doi: 10.1038/nchembio.2007.57. Epub 2007 Dec 23.
4
Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.
J Biol Chem. 2007 Dec 7;282(49):35695-702. doi: 10.1074/jbc.M703937200. Epub 2007 Sep 24.
5
Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
Biometals. 2007 Jun;20(3-4):275-89. doi: 10.1007/s10534-006-9068-1. Epub 2007 Jan 16.
6
Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli.
J Bacteriol. 2007 Mar;189(5):1616-26. doi: 10.1128/JB.01357-06. Epub 2006 Dec 22.
7
Waltzing transporters and 'the dance macabre' between humans and bacteria.
Nat Rev Drug Discov. 2007 Jan;6(1):56-65. doi: 10.1038/nrd2200. Epub 2006 Dec 8.
8
9
Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism.
Science. 2006 Sep 1;313(5791):1295-8. doi: 10.1126/science.1131542.
10
Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.
Nature. 2006 Sep 14;443(7108):173-9. doi: 10.1038/nature05076. Epub 2006 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验