Suppr超能文献

果蝇Pax6同源物眼无在胰岛素生成神经元的分化和功能中的保守作用。

Conserved role for the Drosophila Pax6 homolog Eyeless in differentiation and function of insulin-producing neurons.

作者信息

Clements Jason, Hens Korneel, Francis Carmen, Schellens Ann, Callaerts Patrick

机构信息

Laboratory of Developmental Genetics, VIB, and Center of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium.

出版信息

Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16183-8. doi: 10.1073/pnas.0708330105. Epub 2008 Oct 13.

Abstract

Insulin/insulin-like growth factor (IGF) signaling constitutes an evolutionarily conserved pathway that controls growth, energy homeostasis, and longevity. In Drosophila melanogaster, key components of this pathway are the insulin-like peptides (Dilps). The major source of Dilps is a cluster of large neurons in the brain, the insulin-producing cells (IPCs). The genetic control of IPC development and function is poorly understood. Here, we demonstrate that the Pax6 homolog Eyeless is required in the IPCs to control their differentiation and function. Loss of eyeless results in phenotypes associated with loss of insulin signaling, including decreased animal size and increased carbohydrate levels in larval hemolymph. We show that mutations in eyeless lead to defective differentiation and morphologically abnormal IPCs. We also demonstrate that Eyeless controls IPC function by the direct transcriptional control of one of the major Dilps, dilp5. We propose that Eyeless has an evolutionarily conserved role in IPCs with remarkable similarities to the role of vertebrate Pax6 in beta cells of the pancreas.

摘要

胰岛素/胰岛素样生长因子(IGF)信号传导构成了一条在进化上保守的途径,该途径控制生长、能量稳态和寿命。在黑腹果蝇中,这条途径的关键成分是胰岛素样肽(Dilps)。Dilps的主要来源是大脑中一群大神经元,即胰岛素产生细胞(IPCs)。人们对IPCs发育和功能的基因控制了解甚少。在这里,我们证明在IPCs中需要Pax6同源物无眼来控制它们的分化和功能。无眼的缺失会导致与胰岛素信号丧失相关的表型,包括动物体型减小和幼虫血淋巴中碳水化合物水平升高。我们表明无眼的突变会导致分化缺陷和形态异常的IPCs。我们还证明无眼通过直接转录控制主要Dilps之一dilp5来控制IPCs功能。我们提出无眼在IPCs中具有进化上保守的作用,与脊椎动物Pax6在胰腺β细胞中的作用有显著相似之处。

相似文献

1
Conserved role for the Drosophila Pax6 homolog Eyeless in differentiation and function of insulin-producing neurons.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16183-8. doi: 10.1073/pnas.0708330105. Epub 2008 Oct 13.
2
Cell migration in Drosophila optic lobe neurons is controlled by eyeless/Pax6.
Development. 2011 Feb;138(4):687-93. doi: 10.1242/dev.056069. Epub 2011 Jan 5.
5
Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless.
Dev Biol. 2009 Sep 1;333(1):215-27. doi: 10.1016/j.ydbio.2009.06.013. Epub 2009 Jun 13.
7
Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless.
Development. 2002 Feb;129(4):1015-26. doi: 10.1242/dev.129.4.1015.
8
Functional divergence between eyeless and twin of eyeless in Drosophila melanogaster.
Development. 2004 Aug;131(16):3943-53. doi: 10.1242/dev.01278. Epub 2004 Jul 14.
9
Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells.
Cell Rep. 2016 Sep 27;17(1):137-148. doi: 10.1016/j.celrep.2016.08.093.
10
Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila.
Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):564-9. doi: 10.1073/pnas.96.2.564.

引用本文的文献

3
Genome-wide analysis identifies Homothorax and Extradenticle as regulators of insulin in Drosophila Insulin-Producing cells.
PLoS Genet. 2022 Sep 12;18(9):e1010380. doi: 10.1371/journal.pgen.1010380. eCollection 2022 Sep.
4
Glial and Neuronal Neuroglian, Semaphorin-1a and Plexin A Regulate Morphological and Functional Differentiation of Insulin-Producing Cells.
Front Endocrinol (Lausanne). 2021 Jul 1;12:600251. doi: 10.3389/fendo.2021.600251. eCollection 2021.
5
Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila.
Cell Metab. 2021 Jul 6;33(7):1279-1292. doi: 10.1016/j.cmet.2021.05.018. Epub 2021 Jun 16.
6
7
Investigating the role of dachshund b in the development of the pancreatic islet in zebrafish.
J Diabetes Investig. 2021 May;12(5):710-727. doi: 10.1111/jdi.13503. Epub 2021 Feb 28.
8
Regulation of Body Size and Growth Control.
Genetics. 2020 Oct;216(2):269-313. doi: 10.1534/genetics.120.303095.
9
Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions.
Cell Tissue Res. 2020 Nov;382(2):233-266. doi: 10.1007/s00441-020-03264-z. Epub 2020 Aug 22.
10
Metabolism and growth adaptation to environmental conditions in Drosophila.
Cell Mol Life Sci. 2020 Nov;77(22):4523-4551. doi: 10.1007/s00018-020-03547-2. Epub 2020 May 24.

本文引用的文献

1
Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion.
J Mol Endocrinol. 2007 Feb;38(1-2):193-206. doi: 10.1677/JME-06-0053.
2
Transcription factors regulating beta-cell function.
Eur J Endocrinol. 2006 Nov;155(5):671-9. doi: 10.1530/eje.1.02277.
4
A case of novel de novo paired box gene 6 (PAX6) mutation with early-onset diabetes mellitus and aniridia.
Diabet Med. 2005 May;22(5):641-4. doi: 10.1111/j.1464-5491.2005.01469.x.
5
Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3105-10. doi: 10.1073/pnas.0405775102. Epub 2005 Feb 11.
6
Mutation of the Pax6 gene causes impaired glucose-stimulated insulin secretion.
Diabetologia. 2004 Nov;47(11):2039-41. doi: 10.1007/s00125-004-1563-8. Epub 2004 Nov 24.
7
Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells.
Nature. 2004 Sep 16;431(7006):316-20. doi: 10.1038/nature02897.
8
Functional divergence between eyeless and twin of eyeless in Drosophila melanogaster.
Development. 2004 Aug;131(16):3943-53. doi: 10.1242/dev.01278. Epub 2004 Jul 14.
9
Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes.
Dev Biol. 2004 May 15;269(2):479-88. doi: 10.1016/j.ydbio.2004.01.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验