Suppr超能文献

小鼠突触前味觉细胞中第二信使环磷酸腺苷(cAMP)与钙离子(Ca2+)之间的相互作用。

Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells.

作者信息

Roberts Craig D, Dvoryanchikov Gennady, Roper Stephen D, Chaudhari Nirupa

机构信息

Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.

出版信息

J Physiol. 2009 Apr 15;587(Pt 8):1657-68. doi: 10.1113/jphysiol.2009.170555. Epub 2009 Feb 16.

Abstract

The second messenger, 3',5'-cyclic adenosine monophosphate (cAMP), is known to be modulated in taste buds following exposure to gustatory and other stimuli. Which taste cell type(s) (Type I/glial-like cells, Type II/receptor cells, or Type III/presynaptic cells) undergo taste-evoked changes of cAMP and what the functional consequences of such changes are remain unknown. Using Fura-2 imaging of isolated mouse vallate taste cells, we explored how elevating cAMP alters Ca(2+) levels in identified taste cells. Stimulating taste buds with forskolin (Fsk; 1 microm) + isobutylmethylxanthine (IBMX; 100 microm), which elevates cellular cAMP, triggered Ca(2+) transients in 38% of presynaptic cells (n = 128). We used transgenic GAD-GFP mice to show that cAMP-triggered Ca(2+) responses occur only in the subset of presynaptic cells that lack glutamic acid decarboxylase 67 (GAD). We never observed cAMP-stimulated responses in receptor cells, glial-like cells or GAD-expressing presynaptic cells. The response to cAMP was blocked by the protein kinase A inhibitor H89 and by removing extracellular Ca(2+). Thus, the response to elevated cAMP is a PKA-dependent influx of Ca(2+). This Ca(2+) influx was blocked by nifedipine (an inhibitor of L-type voltage-gated Ca(2+) channels) but was unperturbed by omega-agatoxin IVA and omega-conotoxin GVIA (P/Q-type and N-type channel inhibitors, respectively). Single-cell RT-PCR on functionally identified presynaptic cells from GAD-GFP mice confirmed the pharmacological analyses: Ca(v)1.2 (an L-type subunit) is expressed in cells that display cAMP-triggered Ca(2+) influx, while Ca(v)2.1 (a P/Q subunit) is expressed in all presynaptic cells, and underlies depolarization-triggered Ca(2+) influx. Collectively, these data demonstrate cross-talk between cAMP and Ca(2+) signalling in a subclass of taste cells that form synapses with gustatory fibres and may integrate tastant-evoked signals.

摘要

第二信使3',5'-环磷酸腺苷(cAMP)在味蕾受到味觉及其他刺激后会受到调节。目前尚不清楚哪种味觉细胞类型(I型/胶质样细胞、II型/受体细胞或III型/突触前细胞)会经历味觉诱发的cAMP变化以及这种变化的功能后果是什么。我们利用分离的小鼠轮廓乳头味觉细胞的Fura-2成像技术,探究了cAMP升高如何改变特定味觉细胞中的Ca(2+)水平。用福斯高林(Fsk;1微摩尔)+异丁基甲基黄嘌呤(IBMX;100微摩尔)刺激味蕾,可升高细胞内cAMP,触发了38%的突触前细胞(n = 128)出现Ca(2+)瞬变。我们利用转基因GAD-GFP小鼠证明,cAMP触发的Ca(2+)反应仅发生在缺乏谷氨酸脱羧酶67(GAD)的突触前细胞亚群中。我们从未在受体细胞、胶质样细胞或表达GAD的突触前细胞中观察到cAMP刺激的反应。对cAMP的反应被蛋白激酶A抑制剂H89以及去除细胞外Ca(2+)所阻断。因此,对升高的cAMP的反应是一种依赖蛋白激酶A的Ca(2+)内流。这种Ca(2+)内流被硝苯地平(一种L型电压门控Ca(2+)通道抑制剂)阻断,但不受ω-芋螺毒素IVA和ω-芋螺毒素GVIA(分别为P/Q型和N型通道抑制剂)的影响。对来自GAD-GFP小鼠的功能鉴定的突触前细胞进行单细胞RT-PCR证实了药理学分析结果:Ca(v)1.2(一种L型亚基)在显示cAMP触发的Ca(2+)内流的细胞中表达,而Ca(v)2.1(一种P/Q亚基)在所有突触前细胞中表达,并是去极化触发的Ca(2+)内流的基础。总体而言,这些数据证明了在与味觉纤维形成突触并可能整合味觉诱发信号的一类味觉细胞中,cAMP和Ca(2+)信号之间存在相互作用。

相似文献

1
Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells.
J Physiol. 2009 Apr 15;587(Pt 8):1657-68. doi: 10.1113/jphysiol.2009.170555. Epub 2009 Feb 16.
4
Protein kinase-dependent and Ca(2+)-independent cAMP inhibition of ANP release in beating rabbit atria.
Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1477-89. doi: 10.1152/ajpregu.00316.2001.
6
Functional importance of L- and P/Q-type voltage-gated calcium channels in human renal vasculature.
Hypertension. 2011 Sep;58(3):464-70. doi: 10.1161/HYPERTENSIONAHA.111.170845. Epub 2011 Jul 25.
8
Role of the cyclic-AMP/PKA cascade and of P/Q-type Ca++ channels in endocannabinoid-mediated long-term depression in the nucleus accumbens.
Neuropharmacology. 2008 Jan;54(1):87-94. doi: 10.1016/j.neuropharm.2007.04.014. Epub 2007 May 5.
10
Differential regulation of N- and Q-type Ca2+ channels by cyclic nucleotides and G-proteins.
Life Sci. 1998;62(17-18):1543-7. doi: 10.1016/s0024-3205(98)00104-0.

引用本文的文献

1
Exogenous oral application of PYY and exendin-4 impacts upon taste-related behavior and taste perception in wild-type mice.
Neuropharmacology. 2025 Jul 1;272:110408. doi: 10.1016/j.neuropharm.2025.110408. Epub 2025 Mar 12.
2
Preferential allosteric modulation of Otop1 channels by small molecule compounds.
Commun Biol. 2025 Feb 26;8(1):314. doi: 10.1038/s42003-025-07775-9.
3
Intracellular cAMP signaling-induced Ca influx mediated by calcium homeostasis modulator 1 (CALHM1) in human odontoblasts.
Pflugers Arch. 2025 Feb;477(2):273-290. doi: 10.1007/s00424-024-03038-4. Epub 2024 Nov 12.
5
Defining the role of TRPM4 in broadly responsive taste receptor cells.
Front Cell Neurosci. 2023 Mar 22;17:1148995. doi: 10.3389/fncel.2023.1148995. eCollection 2023.
6
GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types.
Chem Senses. 2021 Jan 1;46. doi: 10.1093/chemse/bjab033.
7
Mechanisms for the Sour Taste.
Handb Exp Pharmacol. 2022;275:229-245. doi: 10.1007/164_2021_476.
8
Taste Receptor Signaling.
Handb Exp Pharmacol. 2022;275:33-52. doi: 10.1007/164_2021_442.
9
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca Homeostasis.
Rev Physiol Biochem Pharmacol. 2021;179:73-116. doi: 10.1007/112_2020_55.
10
Sensing Senses: Optical Biosensors to Study Gustation.
Sensors (Basel). 2020 Mar 25;20(7):1811. doi: 10.3390/s20071811.

本文引用的文献

1
Norepinephrine is coreleased with serotonin in mouse taste buds.
J Neurosci. 2008 Dec 3;28(49):13088-93. doi: 10.1523/JNEUROSCI.4187-08.2008.
2
Tonic activity of Galpha-gustducin regulates taste cell responsivity.
FEBS Lett. 2008 Nov 12;582(27):3783-7. doi: 10.1016/j.febslet.2008.10.007. Epub 2008 Oct 16.
3
Modulation of taste sensitivity by GLP-1 signaling.
J Neurochem. 2008 Jul;106(1):455-63. doi: 10.1111/j.1471-4159.2008.05397.x. Epub 2008 Jul 1.
4
Breadth of tuning and taste coding in mammalian taste buds.
J Neurosci. 2007 Oct 3;27(40):10840-8. doi: 10.1523/JNEUROSCI.1863-07.2007.
5
Biogenic amine synthesis and uptake in rodent taste buds.
J Comp Neurol. 2007 Nov 20;505(3):302-13. doi: 10.1002/cne.21494.
6
Signal transduction and information processing in mammalian taste buds.
Pflugers Arch. 2007 Aug;454(5):759-76. doi: 10.1007/s00424-007-0247-x. Epub 2007 Apr 28.
7
The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6436-41. doi: 10.1073/pnas.0611280104. Epub 2007 Mar 26.
8
Afferent neurotransmission mediated by hemichannels in mammalian taste cells.
EMBO J. 2007 Feb 7;26(3):657-67. doi: 10.1038/sj.emboj.7601526. Epub 2007 Jan 18.
9
An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
Neuroscience. 2006 Dec 1;143(2):445-59. doi: 10.1016/j.neuroscience.2006.08.001. Epub 2006 Sep 8.
10
Separate populations of receptor cells and presynaptic cells in mouse taste buds.
J Neurosci. 2006 Apr 12;26(15):3971-80. doi: 10.1523/JNEUROSCI.0515-06.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验