Suppr超能文献

酵母时序性衰老的分子机制。

A molecular mechanism of chronological aging in yeast.

作者信息

Burtner Christopher R, Murakami Christopher J, Kennedy Brian K, Kaeberlein Matt

机构信息

Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.

出版信息

Cell Cycle. 2009 Apr 15;8(8):1256-70. doi: 10.4161/cc.8.8.8287. Epub 2009 Apr 23.

Abstract

The molecular mechanisms that cause organismal aging are a topic of intense scrutiny and debate. Dietary restriction extends the life span of many organisms, including yeast, and efforts are underway to understand the biochemical and genetic pathways that regulate this life span extension in model organisms. Here we describe the mechanism by which dietary restriction extends yeast chronological life span, defined as the length of time stationary yeast cells remain viable in a quiescent state. We find that aging under standard culture conditions is the result of a cell-extrinsic component that is linked to the pH of the culture medium. We identify acetic acid as a cell-extrinsic mediator of cell death during chronological aging, and demonstrate that dietary restriction, growth in a non-fermentable carbon source, or transferring cells to water increases chronological life span by reducing or eliminating extracellular acetic acid. Other life span extending environmental and genetic interventions, such as growth in high osmolarity media, deletion of SCH9 or RAS2, increase cellular resistance to acetic acid. We conclude that acetic acid induced mortality is the primary mechanism of chronological aging in yeast under standard conditions.

摘要

导致生物体衰老的分子机制是一个备受密切关注和争论的话题。饮食限制可延长包括酵母在内的许多生物体的寿命,目前正在努力了解调节模式生物中这种寿命延长的生化和遗传途径。在这里,我们描述了饮食限制延长酵母时序寿命的机制,时序寿命定义为静止酵母细胞在静止状态下保持存活的时间长度。我们发现,在标准培养条件下的衰老,是与培养基pH值相关的细胞外成分作用的结果。我们确定乙酸是时序衰老过程中细胞死亡的细胞外介质,并证明饮食限制、在不可发酵碳源中生长或把细胞转移到水中,通过减少或消除细胞外乙酸来延长时序寿命。其他延长寿命的环境和遗传干预措施,如在高渗透压培养基中生长、删除SCH9或RAS2,可增加细胞对乙酸的抗性。我们得出结论,在标准条件下,乙酸诱导的死亡是酵母时序衰老的主要机制。

相似文献

1
A molecular mechanism of chronological aging in yeast.
Cell Cycle. 2009 Apr 15;8(8):1256-70. doi: 10.4161/cc.8.8.8287. Epub 2009 Apr 23.
3
Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension.
PLoS Genet. 2009 May;5(5):e1000467. doi: 10.1371/journal.pgen.1000467. Epub 2009 May 8.
4
Sir2 blocks extreme life-span extension.
Cell. 2005 Nov 18;123(4):655-67. doi: 10.1016/j.cell.2005.08.042.
6
Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.
Exp Gerontol. 2013 Oct;48(10):1107-19. doi: 10.1016/j.exger.2013.01.006. Epub 2013 Jan 18.
8
A method for high-throughput quantitative analysis of yeast chronological life span.
J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):113-21. doi: 10.1093/gerona/63.2.113.
10

引用本文的文献

2
Sugar accelerates chronological aging in yeast via ceramides.
Cell Stress. 2025 Jul 22;9:158-173. doi: 10.15698/cst2025.07.308. eCollection 2025.
4
Exploring the anti-aging potential of natural products and plant extracts in budding yeast : A review.
F1000Res. 2024 Dec 17;12:1265. doi: 10.12688/f1000research.141669.2. eCollection 2023.
5
Regulatory dynamics of Sch9 in response to cytosolic acidification: From spatial reconfiguration to cellular adaptation to stresses.
iScience. 2024 Dec 10;28(1):111573. doi: 10.1016/j.isci.2024.111573. eCollection 2025 Jan 17.
7
Spermidine is essential for fasting-mediated autophagy and longevity.
Nat Cell Biol. 2024 Sep;26(9):1571-1584. doi: 10.1038/s41556-024-01468-x. Epub 2024 Aug 8.
8
Protein Kinase A Negatively Regulates the Acetic Acid Stress Response in .
Microorganisms. 2024 Jul 17;12(7):1452. doi: 10.3390/microorganisms12071452.
9
Molecular mechanisms of genotype-dependent lifespan variation mediated by caloric restriction: insight from wild yeast isolates.
Front Aging. 2024 Jul 11;5:1408160. doi: 10.3389/fragi.2024.1408160. eCollection 2024.

本文引用的文献

1
Replicative aging in yeast: the means to the end.
Annu Rev Cell Dev Biol. 2008;24:29-54. doi: 10.1146/annurev.cellbio.23.090506.123509.
3
Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4.
Cell. 2008 Apr 18;133(2):292-302. doi: 10.1016/j.cell.2008.02.037.
4
Quantitative evidence for conserved longevity pathways between divergent eukaryotic species.
Genome Res. 2008 Apr;18(4):564-70. doi: 10.1101/gr.074724.107. Epub 2008 Mar 13.
5
A method for high-throughput quantitative analysis of yeast chronological life span.
J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):113-21. doi: 10.1093/gerona/63.2.113.
6
A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.
PLoS Genet. 2008 Feb;4(2):e24. doi: 10.1371/journal.pgen.0040024.
7
Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9.
PLoS Genet. 2008 Jan;4(1):e13. doi: 10.1371/journal.pgen.0040013. Epub 2007 Dec 13.
8
Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1.
Microbiology (Reading). 2007 Nov;153(Pt 11):3667-3676. doi: 10.1099/mic.0.2007/009340-0.
9
Significant and systematic expression differentiation in long-lived yeast strains.
PLoS One. 2007 Oct 31;2(10):e1095. doi: 10.1371/journal.pone.0001095.
10
Protein translation, 2007.
Aging Cell. 2007 Dec;6(6):731-4. doi: 10.1111/j.1474-9726.2007.00341.x. Epub 2007 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验