Seiradake Elena, Mao Weimin, Hernandez Vincent, Baker Stephen J, Plattner Jacob J, Alley M R K, Cusack Stephen
European Molecular Biology Laboratory, Grenoble Outstation rue Jules Horowitz, France.
J Mol Biol. 2009 Jul 10;390(2):196-207. doi: 10.1016/j.jmb.2009.04.073. Epub 2009 May 6.
Leucyl-tRNA synthetase (LeuRS) specifically links leucine to the 3' end of tRNA(leu) isoacceptors. The overall accuracy of the two-step aminoacylation reaction is enhanced by an editing domain that hydrolyzes mischarged tRNAs, notably ile-tRNA(leu). We present crystal structures of the editing domain from two eukaryotic cytosolic LeuRS: human and fungal pathogen Candida albicans. In comparison with previous structures of the editing domain from bacterial and archeal kingdoms, these structures show that the LeuRS editing domain has a conserved structural core containing the active site for hydrolysis, with distinct bacterial, archeal, or eukaryotic specific peripheral insertions. It was recently shown that the benzoxaborole antifungal compound AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-1,2-benzoxaborole) inhibits LeuRS by forming a covalent adduct with the 3' adenosine of tRNA(leu) at the editing site, thus locking the enzyme in an inactive conformation. To provide a structural basis for enhancing the specificity of these benzoxaborole antifungals, we determined the structure at 2.2 A resolution of the C. albicans editing domain in complex with a related compound, AN3018 (6-(ethylamino)-5-fluorobenzo[c][1,2]oxaborol-1(3H)-ol), using AMP as a surrogate for the 3' adenosine of tRNA(leu). The interactions between the AN3018-AMP adduct and C. albicans LeuRS are similar to those previously observed for bacterial LeuRS with the AN2690 adduct, with an additional hydrogen bond to the extra ethylamine group. However, compared to bacteria, eukaryotic cytosolic LeuRS editing domains contain an extra helix that closes over the active site, largely burying the adduct and providing additional direct and water-mediated contacts. Small differences between the human domain and the fungal domain could be exploited to enhance fungal specificity.
亮氨酰 - tRNA合成酶(LeuRS)特异性地将亮氨酸连接到同功tRNA(leu)的3'末端。两步氨酰化反应的整体准确性通过一个编辑结构域得到增强,该结构域可水解错误负载的tRNA,特别是异亮氨酰 - tRNA(leu)。我们展示了来自两种真核细胞质LeuRS(人类和真菌病原体白色念珠菌)的编辑结构域的晶体结构。与之前来自细菌和古菌界的编辑结构域结构相比,这些结构表明LeuRS编辑结构域具有一个保守的结构核心,其中包含水解活性位点,以及不同的细菌、古菌或真核生物特异性外围插入片段。最近研究表明,苯并氧杂硼烷抗真菌化合物AN2690(5 - 氟 - 1,3 - 二氢 - 1 - 羟基 - 1,2 - 苯并氧杂硼烷)通过在编辑位点与tRNA(leu)的3'腺苷形成共价加合物来抑制LeuRS,从而将酶锁定在无活性构象。为了为提高这些苯并氧杂硼烷抗真菌药物的特异性提供结构基础,我们使用AMP作为tRNA(leu)的3'腺苷的替代物,以2.2 Å分辨率确定了白色念珠菌编辑结构域与相关化合物AN3018(6 - (乙氨基) - 5 - 氟苯并[c][1,2]氧杂硼烷 - 1(3H) - 醇)复合物的结构。AN3018 - AMP加合物与白色念珠菌LeuRS之间的相互作用与之前观察到细菌LeuRS与AN2690加合物的相互作用相似,额外增加了一个与额外乙胺基团的氢键。然而,与细菌相比,真核细胞质LeuRS编辑结构域包含一个额外的螺旋,该螺旋在活性位点上方闭合,很大程度上掩埋了加合物并提供了额外的直接和水介导的接触。人类结构域和真菌结构域之间的微小差异可用于提高对真菌的特异性。