Suppr超能文献

海马体形状特征的多维分类可区分阿尔茨海默病和轻度认知障碍与正常衰老。

Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging.

作者信息

Gerardin Emilie, Chételat Gaël, Chupin Marie, Cuingnet Rémi, Desgranges Béatrice, Kim Ho-Sung, Niethammer Marc, Dubois Bruno, Lehéricy Stéphane, Garnero Line, Eustache Francis, Colliot Olivier

机构信息

UPMC Université Paris 06, UMR 7225, UMR_S 975, Centre de Recherche de l'Institut Cerveau-Moelle (CRICM), Paris, France.

出版信息

Neuroimage. 2009 Oct 1;47(4):1476-86. doi: 10.1016/j.neuroimage.2009.05.036. Epub 2009 May 20.

Abstract

We describe a new method to automatically discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls, based on multidimensional classification of hippocampal shape features. This approach uses spherical harmonics (SPHARM) coefficients to model the shape of the hippocampi, which are segmented from magnetic resonance images (MRI) using a fully automatic method that we previously developed. SPHARM coefficients are used as features in a classification procedure based on support vector machines (SVM). The most relevant features for classification are selected using a bagging strategy. We evaluate the accuracy of our method in a group of 23 patients with AD (10 males, 13 females, age+/-standard-deviation (SD)=73+/-6 years, mini-mental score (MMS)=24.4+/-2.8), 23 patients with amnestic MCI (10 males, 13 females, age+/-SD=74+/-8 years, MMS=27.3+/-1.4) and 25 elderly healthy controls (13 males, 12 females, age+/-SD=64+/-8 years), using leave-one-out cross-validation. For AD vs controls, we obtain a correct classification rate of 94%, a sensitivity of 96%, and a specificity of 92%. For MCI vs controls, we obtain a classification rate of 83%, a sensitivity of 83%, and a specificity of 84%. This accuracy is superior to that of hippocampal volumetry and is comparable to recently published SVM-based whole-brain classification methods, which relied on a different strategy. This new method may become a useful tool to assist in the diagnosis of Alzheimer's disease.

摘要

我们描述了一种基于海马形状特征的多维分类方法,用于自动区分阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和老年对照组。该方法使用球谐函数(SPHARM)系数对海马形状进行建模,这些海马是通过我们之前开发的全自动方法从磁共振图像(MRI)中分割出来的。SPHARM系数在基于支持向量机(SVM)的分类过程中用作特征。使用装袋策略选择分类最相关的特征。我们采用留一法交叉验证,在一组23例AD患者(10例男性,13例女性,年龄±标准差(SD)=73±6岁,简易精神状态评分(MMS)=24.4±2.8)、23例遗忘型MCI患者(10例男性,13例女性,年龄±SD=74±8岁,MMS=27.3±1.4)和25例老年健康对照(13例男性,12例女性,年龄±SD=64±8岁)中评估我们方法的准确性。对于AD与对照组,我们获得了94%的正确分类率、96%的灵敏度和92%的特异性。对于MCI与对照组,我们获得了83%的分类率、83%的灵敏度和84%的特异性。这种准确性优于海马体积测量法,并且与最近发表的基于SVM的全脑分类方法相当,后者采用了不同的策略。这种新方法可能成为辅助诊断阿尔茨海默病的有用工具。

相似文献

4
Alzheimer's disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex.
Comput Med Imaging Graph. 2015 Sep;44:13-25. doi: 10.1016/j.compmedimag.2015.04.007. Epub 2015 May 19.
6
Binary classification of ¹⁸F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI.
Neuroimage. 2013 Jan 1;64:517-25. doi: 10.1016/j.neuroimage.2012.09.015. Epub 2012 Sep 14.
8
Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI.
Neuroradiology. 2009 Feb;51(2):73-83. doi: 10.1007/s00234-008-0463-x. Epub 2008 Oct 10.
10
Locally linear embedding (LLE) for MRI based Alzheimer's disease classification.
Neuroimage. 2013 Dec;83:148-57. doi: 10.1016/j.neuroimage.2013.06.033. Epub 2013 Jun 21.

引用本文的文献

4
Landmark-based spherical quasi-conformal mapping for hippocampal surface registration.
Quant Imaging Med Surg. 2024 Jun 1;14(6):3997-4014. doi: 10.21037/qims-23-1297. Epub 2024 May 24.
5
A Case-Control Clinical Trial on a Deep Learning-Based Classification System for Diagnosis of Amyloid-Positive Alzheimer's Disease.
Psychiatry Investig. 2023 Dec;20(12):1195-1203. doi: 10.30773/pi.2023.0052. Epub 2023 Dec 18.
9
Effects of mixed metal exposures on MRI diffusion features in the medial temporal lobe.
medRxiv. 2024 Jan 30:2023.07.18.23292828. doi: 10.1101/2023.07.18.23292828.
10
Acupuncture on mild cognitive impairment: A systematic review of neuroimaging studies.
Front Aging Neurosci. 2023 Feb 15;15:1007436. doi: 10.3389/fnagi.2023.1007436. eCollection 2023.

本文引用的文献

2
Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation.
Neuroimage. 2009 Jul 1;46(3):749-61. doi: 10.1016/j.neuroimage.2009.02.013. Epub 2009 Feb 21.
3
Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI.
Neuroimage. 2008 Jul 15;41(4):1220-7. doi: 10.1016/j.neuroimage.2008.03.050. Epub 2008 Apr 8.
5
Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry.
Neuropsychologia. 2008;46(6):1721-31. doi: 10.1016/j.neuropsychologia.2007.11.037. Epub 2008 Jan 16.
6
Automatic classification of MR scans in Alzheimer's disease.
Brain. 2008 Mar;131(Pt 3):681-9. doi: 10.1093/brain/awm319. Epub 2008 Jan 17.
7
Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies.
Neuroimage. 2008 Feb 1;39(3):1186-97. doi: 10.1016/j.neuroimage.2007.09.073. Epub 2007 Oct 22.
9
A fast diffeomorphic image registration algorithm.
Neuroimage. 2007 Oct 15;38(1):95-113. doi: 10.1016/j.neuroimage.2007.07.007. Epub 2007 Jul 18.
10
Hippocampal shape analysis of Alzheimer disease based on machine learning methods.
AJNR Am J Neuroradiol. 2007 Aug;28(7):1339-45. doi: 10.3174/ajnr.A0620.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验