Suppr超能文献

微小隐孢子虫和人隐孢子虫寄生原生动物多态性表面糖蛋白的荟萃分析。

Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum and Cryptosporidium hominis.

作者信息

Widmer G

机构信息

Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, North Grafton, MA, USA.

出版信息

Epidemiol Infect. 2009 Dec;137(12):1800-8. doi: 10.1017/S0950268809990215. Epub 2009 Jun 16.

Abstract

Due to its extensive polymorphism, a partial sequence of the Cryptosporidium surface glycoprotein gene gp60 has been frequently used as a genetic marker. I explored the global diversity of this protein, and compared its sequence diversity in Cryptosporidium parvum and Cryptosporidium hominis. In marked contrast to the geographical partition of C. parvum and C. hominis multi-locus genotypes, gp60 allelic groups showed no evidence of segregating in space, or of differing with respect to geographical diversity. Globally, genetic diversity of C. hominis gp60 exceeded that of C. parvum. Within C. parvum, gp60 alleles originating from human isolates were more diverse than those infecting ruminants. Phylogenetic analysis grouped gp60 sequences into a small number of relatively homogenous allelic groups, with only a small number of alleles having evolved independently. With the notable exception of a group of alleles restricted to humans, C. parvum alleles are found in ruminants and humans.

摘要

由于其广泛的多态性,隐孢子虫表面糖蛋白基因gp60的部分序列常被用作遗传标记。我探究了该蛋白的全球多样性,并比较了其在微小隐孢子虫和人隐孢子虫中的序列多样性。与微小隐孢子虫和人隐孢子虫多位点基因型的地理划分形成显著对比的是,gp60等位基因群没有表现出在空间上隔离或在地理多样性方面存在差异的证据。在全球范围内,人隐孢子虫gp60的遗传多样性超过了微小隐孢子虫。在微小隐孢子虫中,源自人类分离株的gp60等位基因比感染反刍动物的等位基因更加多样。系统发育分析将gp60序列分为少数几个相对同质的等位基因群,只有少数等位基因是独立进化的。除了一组仅限于人类的等位基因外,微小隐孢子虫的等位基因在反刍动物和人类中均有发现。

相似文献

1
Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum and Cryptosporidium hominis.
Epidemiol Infect. 2009 Dec;137(12):1800-8. doi: 10.1017/S0950268809990215. Epub 2009 Jun 16.
2
Comparison of single- and multilocus genetic diversity in the protozoan parasites Cryptosporidium parvum and C. hominis.
Appl Environ Microbiol. 2010 Oct;76(19):6639-44. doi: 10.1128/AEM.01268-10. Epub 2010 Aug 13.
4
Genetic diversity of Cryptosporidium isolates from human populations in an urban area of Northern Tunisia.
Infect Genet Evol. 2018 Mar;58:237-242. doi: 10.1016/j.meegid.2018.01.004. Epub 2018 Jan 7.
6
Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis.
Infect Genet Evol. 2006 Mar;6(2):113-22. doi: 10.1016/j.meegid.2005.02.002. Epub 2005 Mar 17.
8
Molecular characterization of Cryptosporidium isolates from humans in Ontario, Canada.
Parasit Vectors. 2021 Jan 22;14(1):69. doi: 10.1186/s13071-020-04546-9.
9
Glycoprotein 60 diversity in C. hominis and C. parvum causing human cryptosporidiosis in NSW, Australia.
Exp Parasitol. 2009 Jun;122(2):124-7. doi: 10.1016/j.exppara.2009.02.006. Epub 2009 Feb 20.
10
Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin.
J Clin Microbiol. 2006 Dec;44(12):4303-8. doi: 10.1128/JCM.01067-06. Epub 2006 Sep 27.

引用本文的文献

1
Identification of the glycopeptide epitope recognized by a protective monoclonal antibody.
Infect Immun. 2023 Oct 17;91(10):e0027523. doi: 10.1128/iai.00275-23. Epub 2023 Sep 19.
4
The Long and Short of Next Generation Sequencing for Research.
Front Cell Infect Microbiol. 2022 Mar 28;12:871860. doi: 10.3389/fcimb.2022.871860. eCollection 2022.
5
Prevalence of spp. in Yaks () in China: A Systematic Review and Meta-Analysis.
Front Cell Infect Microbiol. 2021 Oct 18;11:770612. doi: 10.3389/fcimb.2021.770612. eCollection 2021.
6
spp. diagnosis and research in the 21 century.
Food Waterborne Parasitol. 2021 Aug 20;24:e00131. doi: 10.1016/j.fawpar.2021.e00131. eCollection 2021 Sep.
7
Comparative genetic diversity of species causing human infections.
Parasitology. 2020 Nov;147(13):1532-1537. doi: 10.1017/S0031182020001493. Epub 2020 Aug 10.
8
Local and global genetic diversity of protozoan parasites: Spatial distribution of Cryptosporidium and Giardia genotypes.
PLoS Negl Trop Dis. 2017 Jul 13;11(7):e0005736. doi: 10.1371/journal.pntd.0005736. eCollection 2017 Jul.
9
Evolutionary processes in populations of Cryptosporidium inferred from gp60 sequence data.
Parasitol Res. 2017 Jul;116(7):1855-1861. doi: 10.1007/s00436-017-5459-1. Epub 2017 May 13.
10
Hypothesis: Cryptosporidium genetic diversity mirrors national disease notification rate.
Parasit Vectors. 2015 Jun 6;8:308. doi: 10.1186/s13071-015-0921-3.

本文引用的文献

2
Inferences about the global population structures of Cryptosporidium parvum and Cryptosporidium hominis.
Appl Environ Microbiol. 2008 Dec;74(23):7227-34. doi: 10.1128/AEM.01576-08. Epub 2008 Oct 3.
3
Cryptosporidium species and subtypes and clinical manifestations in children, Peru.
Emerg Infect Dis. 2008 Oct;14(10):1567-74. doi: 10.3201/eid1410.071273.
4
Genetic diversity and zoonotic potential of Cryptosporidium parvum causing foal diarrhea.
J Clin Microbiol. 2008 Jul;46(7):2396-8. doi: 10.1128/JCM.00936-08. Epub 2008 May 28.
5
The prevalence of Cryptosporidium species and subtypes in human faecal samples in Ireland.
Epidemiol Infect. 2009 Feb;137(2):270-7. doi: 10.1017/S0950268808000769. Epub 2008 May 12.
7
Unique Cryptosporidium population in HIV-infected persons, Jamaica.
Emerg Infect Dis. 2008 May;14(5):841-3. doi: 10.3201/eid1405.071277.
8
Molecular epidemiology with subtype analysis of Cryptosporidium in calves in Belgium.
Parasitology. 2007 Dec;134(Pt.14):1981-7. doi: 10.1017/S0031182007003460. Epub 2007 Aug 28.
9
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.
10
Subtypes of Cryptosporidium parvum in humans and disease risk.
Emerg Infect Dis. 2007 Jan;13(1):82-8. doi: 10.3201/eid1301.060481.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验