Ptak Christopher P, Ahmed Ahmed H, Oswald Robert E
Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
Biochemistry. 2009 Sep 15;48(36):8594-602. doi: 10.1021/bi901127s.
Ionotropic glutamate receptors mediate the majority of vertebrate excitatory synaptic transmission and are therapeutic targets for cognitive enhancement and treatment of schizophrenia. The binding domains of these tetrameric receptors consist of two dimers, and the dissociation of the dimer interface of the ligand-binding domain leads to desensitization in the continued presence of agonist. Positive allosteric modulators act by strengthening the dimer interface and reducing the level of desensitization, thereby increasing steady-state activation. Removing the desensitized state for simplified analysis of receptor activation is commonly achieved using cyclothiazide (CTZ), the most potent modulator of the benzothiadiazide class, with the flip form of the AMPA receptor subtype. IDRA-21, the first benzothiadiazide to have an effect in behavioral tests, is an important lead compound in clinical trials for cognitive enhancement as it can cross the blood-brain barrier. Intermediate structures between CTZ and IDRA-21 show reduced potency, suggesting that these two compounds have different contact points associated with binding. To understand how benzothiadiazides bind to the pocket bridging the dimer interface, we generated a series of crystal structures of the GluR2 ligand-binding domain complexed with benzothiadiazide derivatives (IDRA-21, hydroflumethiazide, hydrochlorothiazide, chlorothiazide, trichlormethiazide, and althiazide) for comparison with an existing structure for cyclothiazide. The structures detail how changes in the substituents at the 3- and 7-positions of the hydrobenzothiadiazide ring shift the orientation of the drug in the binding site and, in some cases, change the stoichiometry of binding. All derivatives maintain a hydrogen bond with the Ser754 hydroxyl, affirming the partial selectivity of the benzothiadiazides for the flip form of AMPA receptors.
离子型谷氨酸受体介导了大多数脊椎动物的兴奋性突触传递,并且是认知增强和精神分裂症治疗的治疗靶点。这些四聚体受体的结合结构域由两个二聚体组成,配体结合结构域二聚体界面的解离会导致在激动剂持续存在的情况下发生脱敏。正变构调节剂通过加强二聚体界面并降低脱敏水平来发挥作用,从而增加稳态激活。使用环噻嗪(CTZ)通常可以消除脱敏状态,以便简化受体激活分析,CTZ是苯并噻二嗪类中最有效的调节剂,与AMPA受体亚型的翻转形式结合。IDRA-21是首个在行为测试中有效的苯并噻二嗪,是认知增强临床试验中的重要先导化合物,因为它可以穿过血脑屏障。CTZ和IDRA-21之间的中间结构显示出效力降低,这表明这两种化合物具有与结合相关的不同接触点。为了了解苯并噻二嗪如何与连接二聚体界面的口袋结合,我们生成了一系列与苯并噻二嗪衍生物(IDRA-21、氢氟噻嗪、氢氯噻嗪、氯噻嗪、三氯噻嗪和阿噻嗪)复合的GluR2配体结合结构域的晶体结构,以便与现有的环噻嗪结构进行比较。这些结构详细说明了氢苯并噻二嗪环3位和7位取代基的变化如何改变药物在结合位点的取向,并且在某些情况下,改变结合的化学计量。所有衍生物都与Ser754羟基保持氢键,证实了苯并噻二嗪对AMPA受体翻转形式的部分选择性。