Suppr超能文献

全基因组范围内对组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)的图谱绘制揭示了它们在活跃基因和非活跃基因中的不同功能。

Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.

作者信息

Wang Zhibin, Zang Chongzhi, Cui Kairong, Schones Dustin E, Barski Artem, Peng Weiqun, Zhao Keji

机构信息

Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Cell. 2009 Sep 4;138(5):1019-31. doi: 10.1016/j.cell.2009.06.049. Epub 2009 Aug 20.

Abstract

Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.

摘要

组蛋白乙酰转移酶(HATs)和去乙酰化酶(HDACs)发挥拮抗作用来控制组蛋白乙酰化。由于乙酰化是活跃转录的组蛋白标记,HATs与活跃基因相关,而HDACs与非活跃基因相关。我们在此描述了HATs和HDACs在染色质上结合的全基因组定位,并发现二者都存在于具有乙酰化组蛋白的活跃基因处。我们的数据提供了证据,表明HATs和HDACs都通过磷酸化的RNA聚合酶II靶向到活跃基因的转录区域。此外,人类基因组中的大多数HDACs通过去除活跃基因上的乙酰化来重置染色质。由MLL介导的组蛋白H3K4甲基化引发的非活跃基因,会经历由短暂的HAT/HDAC结合导致的乙酰化和去乙酰化动态循环,这会阻止RNA聚合酶II与这些基因结合,但使其为未来的激活做好准备。没有任何H3K4甲基化信号的沉默基因,没有显示出被HDACs结合的证据。

相似文献

1
Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
Cell. 2009 Sep 4;138(5):1019-31. doi: 10.1016/j.cell.2009.06.049. Epub 2009 Aug 20.
3
The Role of Histone Acetyltransferases and Histone Deacetylases in Photoreceptor Differentiation and Degeneration.
Int J Med Sci. 2020 May 23;17(10):1307-1314. doi: 10.7150/ijms.43140. eCollection 2020.
4
The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review.
Gene. 2015 May 10;562(1):8-15. doi: 10.1016/j.gene.2015.02.045. Epub 2015 Feb 19.
5
Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation.
Methods Mol Biol. 2017;1510:77-91. doi: 10.1007/978-1-4939-6527-4_6.
7
Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin.
J Biol Chem. 2001 Oct 12;276(41):38307-19. doi: 10.1074/jbc.M100290200. Epub 2001 Jul 30.
9
Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases.
Mol Neurobiol. 2023 Apr;60(4):2330-2354. doi: 10.1007/s12035-023-03213-1. Epub 2023 Jan 13.
10
Linking epigenetics to lipid metabolism: focus on histone deacetylases.
Mol Membr Biol. 2012 Nov;29(7):257-66. doi: 10.3109/09687688.2012.729094. Epub 2012 Oct 24.

引用本文的文献

3
Targets and mechanisms of epigenetic regulation in the temperate cereal vernalisation process.
Front Plant Sci. 2025 Aug 5;16:1520593. doi: 10.3389/fpls.2025.1520593. eCollection 2025.
5
Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review.
Int J Mol Sci. 2025 Jun 12;26(12):5634. doi: 10.3390/ijms26125634.
6
Epigenetics in Plant Response to Climate Change.
Biology (Basel). 2025 May 29;14(6):631. doi: 10.3390/biology14060631.
8
14-3-3ζ allows for adipogenesis by modulating chromatin accessibility during the early stages of adipocyte differentiation.
Mol Metab. 2025 Jul;97:102159. doi: 10.1016/j.molmet.2025.102159. Epub 2025 Apr 28.
9
Targeting the HLA-E-NKG2A axis in combination with MS-275 enhances NK cell-based immunotherapy against DMG.
J Exp Clin Cancer Res. 2025 Apr 29;44(1):133. doi: 10.1186/s13046-025-03390-y.
10

本文引用的文献

1
Characterization of human epigenomes.
Curr Opin Genet Dev. 2009 Apr;19(2):127-34. doi: 10.1016/j.gde.2009.02.001. Epub 2009 Mar 18.
2
ChIP-seq accurately predicts tissue-specific activity of enhancers.
Nature. 2009 Feb 12;457(7231):854-8. doi: 10.1038/nature07730.
5
Therapeutic application of histone deacetylase inhibitors for central nervous system disorders.
Nat Rev Drug Discov. 2008 Oct;7(10):854-68. doi: 10.1038/nrd2681.
6
Combinatorial patterns of histone acetylations and methylations in the human genome.
Nat Genet. 2008 Jul;40(7):897-903. doi: 10.1038/ng.154. Epub 2008 Jun 15.
8
Dynamic regulation of nucleosome positioning in the human genome.
Cell. 2008 Mar 7;132(5):887-98. doi: 10.1016/j.cell.2008.02.022.
9
The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men.
Nat Rev Mol Cell Biol. 2008 Mar;9(3):206-18. doi: 10.1038/nrm2346.
10
High-resolution mapping and characterization of open chromatin across the genome.
Cell. 2008 Jan 25;132(2):311-22. doi: 10.1016/j.cell.2007.12.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验