Suppr超能文献

晶体结构和生化分析表明,人甘氨酰-tRNA合成酶在Ap4A稳态中具有独特的机制和作用。

Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis.

作者信息

Guo Rey-Ting, Chong Yeeting E, Guo Min, Yang Xiang-Lei

机构信息

Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.

出版信息

J Biol Chem. 2009 Oct 16;284(42):28968-76. doi: 10.1074/jbc.M109.030692. Epub 2009 Aug 26.

Abstract

Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed.

摘要

氨酰 - tRNA合成酶催化氨基酸与它们对应的tRNA连接,以进行蛋白质合成。然而,氨酰化反应可转向生成四磷酸二腺苷(Ap4A),这是细胞调节途径所需的一种通用的多效性信号分子。已知tRNA合成酶产生Ap4A的唯一机制是通过氨酰化反应中间体氨酰 - AMP,因此Ap4A的合成依赖于氨基酸。在此,我们展示了一种新的Ap4A合成机制。晶体结构和生化分析表明,人甘氨酰 - tRNA合成酶(GlyRS)通过两个ATP的直接缩合产生Ap4A,与甘氨酸浓度无关。有趣的是,虽然第一个ATP结合口袋在所有II类tRNA合成酶中都是保守的,但第二个ATP口袋是由GlyRS特有的插入结构域形成的,这表明GlyRS是唯一催化直接Ap4A合成的tRNA合成酶。我们提出了GlyRS在Ap4A稳态中的特殊作用。

相似文献

1
Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis.
J Biol Chem. 2009 Oct 16;284(42):28968-76. doi: 10.1074/jbc.M109.030692. Epub 2009 Aug 26.
2
The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
Structure. 1995 Apr 15;3(4):341-52. doi: 10.1016/s0969-2126(01)00166-6.
4
The crystal structures of the α-subunit of the α(2)β (2) tetrameric Glycyl-tRNA synthetase.
J Struct Funct Genomics. 2012 Dec;13(4):233-9. doi: 10.1007/s10969-012-9142-6. Epub 2012 Oct 6.
7
Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.
J Biol Chem. 2016 Jul 8;291(28):14430-46. doi: 10.1074/jbc.M116.730382. Epub 2016 May 23.
10
Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis.
J Biol Chem. 2016 Mar 11;291(11):5740-5752. doi: 10.1074/jbc.M115.679126. Epub 2016 Jan 21.

引用本文的文献

1
5
Structural basis of a two-step tRNA recognition mechanism for plastid glycyl-tRNA synthetase.
Nucleic Acids Res. 2023 May 8;51(8):4000-4011. doi: 10.1093/nar/gkad144.
6
Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements.
Int J Mol Sci. 2022 Dec 7;23(24):15497. doi: 10.3390/ijms232415497.
7
Re-evaluation of Diadenosine Tetraphosphate (ApA) From a Stress Metabolite to Secondary Messenger.
Front Mol Biosci. 2020 Nov 17;7:606807. doi: 10.3389/fmolb.2020.606807. eCollection 2020.
8
Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation.
Bioessays. 2016 Sep;38(9):818-29. doi: 10.1002/bies.201600052. Epub 2016 Jun 28.
9
Neddylation requires glycyl-tRNA synthetase to protect activated E2.
Nat Struct Mol Biol. 2016 Aug;23(8):730-7. doi: 10.1038/nsmb.3250. Epub 2016 Jun 27.
10
Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis.
J Biol Chem. 2016 Mar 11;291(11):5740-5752. doi: 10.1074/jbc.M115.679126. Epub 2016 Jan 21.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Adaptation of the bacterial membrane to changing environments using aminoacylated phospholipids.
Mol Microbiol. 2009 Feb;71(3):547-50. doi: 10.1111/j.1365-2958.2008.06563.x. Epub 2008 Dec 1.
3
The role of aminoacyl-tRNA synthetases in genetic diseases.
Annu Rev Genomics Hum Genet. 2008;9:87-107. doi: 10.1146/annurev.genom.9.081307.164204.
4
Aminoacyl tRNA synthetases and their connections to disease.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11043-9. doi: 10.1073/pnas.0802862105. Epub 2008 Aug 5.
5
Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed.
FEMS Microbiol Rev. 2008 Jul;32(4):705-21. doi: 10.1111/j.1574-6976.2008.00119.x. Epub 2008 Jun 3.
8
Charcot-Marie-Tooth disease: a clinico-genetic confrontation.
Ann Hum Genet. 2008 May;72(Pt 3):416-41. doi: 10.1111/j.1469-1809.2007.00412.x. Epub 2008 Jan 23.
9
A universal plate format for increased throughput of assays that monitor multiple aminoacyl transfer RNA synthetase activities.
Anal Biochem. 2007 Sep 1;368(1):111-21. doi: 10.1016/j.ab.2007.05.013. Epub 2007 May 18.
10
Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11239-44. doi: 10.1073/pnas.0705055104. Epub 2007 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验