Suppr超能文献

抑制 HIV-1 复制的新方法。

Novel approaches to inhibiting HIV-1 replication.

机构信息

Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.

出版信息

Antiviral Res. 2010 Jan;85(1):119-41. doi: 10.1016/j.antiviral.2009.09.009. Epub 2009 Sep 24.

Abstract

Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral therapeutics necessary. In this article, we highlight a number of steps in the HIV-1 replication cycle that represent promising targets for drug discovery. These include lipid raft microdomains, the RNase H activity of the viral enzyme reverse transcriptase, uncoating of the viral core, host cell machinery involved in the integration of the viral DNA into host cell chromatin, virus assembly, maturation, and budding, and the functions of several viral accessory proteins. We discuss the relevant molecular and cell biology, and describe progress to date in developing inhibitors against these novel targets. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.

摘要

在治疗 HIV-1 感染方面已经取得了相当大的成功,目前已有二十多种抗逆转录病毒药物可用于针对病毒复制周期的几个不同步骤。然而,即使在联合治疗的情况下,这些化合物的耐药性也很容易出现。药物毒性、药物相互作用不良以及随之而来的患者服药依从性差也可能导致治疗失败。这些考虑因素使得继续开发新型抗逆转录病毒疗法成为必要。在本文中,我们强调了 HIV-1 复制周期中的几个步骤,这些步骤代表了药物发现的有前途的靶点。这些靶点包括脂筏微域、病毒酶逆转录酶的 RNase H 活性、病毒核心的脱壳、参与病毒 DNA 整合到宿主细胞染色质的宿主细胞机制、病毒组装、成熟和出芽以及几种病毒辅助蛋白的功能。我们讨论了相关的分子和细胞生物学,并描述了迄今为止针对这些新靶点开发抑制剂的进展。本文是抗病毒研究特刊的一部分,该特刊是为了纪念抗逆转录病毒药物发现和开发 25 周年,第 85 卷,第 1 期,2010 年。

相似文献

1
Novel approaches to inhibiting HIV-1 replication.
Antiviral Res. 2010 Jan;85(1):119-41. doi: 10.1016/j.antiviral.2009.09.009. Epub 2009 Sep 24.
2
New targets for inhibitors of HIV-1 replication.
Nat Rev Mol Cell Biol. 2000 Oct;1(1):40-9. doi: 10.1038/35036060.
3
Molecular basis of human immunodeficiency virus drug resistance: an update.
Antiviral Res. 2010 Jan;85(1):210-31. doi: 10.1016/j.antiviral.2009.07.006. Epub 2009 Jul 16.
5
HIV type 1 Gag as a target for antiviral therapy.
AIDS Res Hum Retroviruses. 2012 Jan;28(1):54-75. doi: 10.1089/AID.2011.0230. Epub 2011 Sep 21.
6
HIV-1 Capsid Inhibitors as Antiretroviral Agents.
Curr HIV Res. 2016;14(3):270-82. doi: 10.2174/1570162x14999160224103555.
8
New therapeutic approaches targeted at the late stages of the HIV-1 replication cycle.
Curr Med Chem. 2011;18(1):16-28. doi: 10.2174/092986711793979751.
9
HIV-1 integrase and RNase H activities as therapeutic targets.
Expert Opin Ther Targets. 2002 Aug;6(4):433-46. doi: 10.1517/14728222.6.4.433.
10
HIV-1 antiretroviral drug therapy.
Cold Spring Harb Perspect Med. 2012 Apr;2(4):a007161. doi: 10.1101/cshperspect.a007161.

引用本文的文献

2
HIV-1 capsid and viral DNA integration.
mBio. 2024 Jan 16;15(1):e0021222. doi: 10.1128/mbio.00212-22. Epub 2023 Dec 12.
3
Inactivation of cell-free HIV-1 by designing potent peptides based on mutations in the CD4 binding site.
Med Biol Eng Comput. 2024 Feb;62(2):423-436. doi: 10.1007/s11517-023-02950-8. Epub 2023 Oct 27.
4
Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus.
J Virol. 2023 Nov 30;97(11):e0073223. doi: 10.1128/jvi.00732-23. Epub 2023 Oct 16.
5
Enhanced Antiviral Ability by a Combination of Zidovudine and Short Hairpin RNA Targeting Avian Leukosis Virus.
Front Microbiol. 2022 Feb 16;12:808982. doi: 10.3389/fmicb.2021.808982. eCollection 2021.
6
The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond.
Front Cell Infect Microbiol. 2021 Oct 21;11:761983. doi: 10.3389/fcimb.2021.761983. eCollection 2021.
10
NHEJ pathway is involved in post-integrational DNA repair due to Ku70 binding to HIV-1 integrase.
Retrovirology. 2019 Nov 6;16(1):30. doi: 10.1186/s12977-019-0492-z.

本文引用的文献

1
Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance.
Antiviral Res. 2010 Jan;85(1):59-74. doi: 10.1016/j.antiviral.2009.10.003. Epub 2009 Oct 22.
3
Entry inhibitors in the treatment of HIV-1 infection.
Antiviral Res. 2010 Jan;85(1):91-100. doi: 10.1016/j.antiviral.2009.07.022. Epub 2009 Aug 14.
4
Functional role of Alix in HIV-1 replication.
Virology. 2009 Sep 1;391(2):284-92. doi: 10.1016/j.virol.2009.06.016.
5
Structure and assembly of immature HIV.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11090-5. doi: 10.1073/pnas.0903535106. Epub 2009 Jun 22.
6
No strings attached: the ESCRT machinery in viral budding and cytokinesis.
J Cell Sci. 2009 Jul 1;122(Pt 13):2167-77. doi: 10.1242/jcs.028308.
7
Virus maturation as a new HIV-1 therapeutic target.
Expert Opin Ther Targets. 2009 Aug;13(8):895-908. doi: 10.1517/14728220903039714.
8
The cell biology of HIV-1 virion genesis.
Cell Host Microbe. 2009 Jun 18;5(6):550-8. doi: 10.1016/j.chom.2009.05.015.
9
X-ray structures of the hexameric building block of the HIV capsid.
Cell. 2009 Jun 26;137(7):1282-92. doi: 10.1016/j.cell.2009.04.063. Epub 2009 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验