Suppr超能文献

脯氨酸利用酶中脯氨酸脱氢酶结构域失活的结构由 N-炔丙基甘氨酸提供,深入了解了底物结合和黄素还原诱导的构象变化。

The structure of the proline utilization a proline dehydrogenase domain inactivated by N-propargylglycine provides insight into conformational changes induced by substrate binding and flavin reduction.

机构信息

Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Biochemistry. 2010 Jan 26;49(3):560-9. doi: 10.1021/bi901717s.

Abstract

Proline utilization A (PutA) from Escherichia coli is a flavoprotein that has mutually exclusive roles as a transcriptional repressor of the put regulon and a membrane-associated enzyme that catalyzes the oxidation of proline to glutamate. Previous studies have shown that the binding of proline in the proline dehydrogenase (PRODH) active site and subsequent reduction of the FAD trigger global conformational changes that enhance PutA-membrane affinity. These events cause PutA to switch from its repressor to its enzymatic role, but the mechanism by which this signal is propagated from the active site to the distal membrane-binding domain is largely unknown. Here, it is shown that N-propargylglycine irreversibly inactivates PutA by covalently linking the flavin N(5) atom to the epsilon-amino of Lys329. Furthermore, inactivation locks PutA into a conformation that may mimic the proline-reduced, membrane-associated form. The 2.15 A resolution structure of the inactivated PRODH domain suggests that the initial events involved in broadcasting the reduced flavin state to the distal membrane-binding domain include major reorganization of the flavin ribityl chain, severe (35 degrees ) butterfly bending of the isoalloxazine ring, and disruption of an electrostatic network involving the flavin N(5) atom, Arg431, and Asp370. The structure also provides information about conformational changes associated with substrate binding. This analysis suggests that the active site is incompletely assembled in the absence of the substrate, and the binding of proline draws together conserved residues in helix 8 and the beta1-alphal loop to complete the active site.

摘要

脯氨酸利用 A(PutA)来自大肠杆菌是一种黄素蛋白,它具有相互排斥的作用,作为put 调节子的转录抑制剂和一种膜相关酶,催化脯氨酸氧化为谷氨酸。先前的研究表明,脯氨酸在脯氨酸脱氢酶(PRODH)活性部位的结合和随后的 FAD 还原触发全局构象变化,增强 PutA-膜亲和力。这些事件导致 PutA 从其抑制剂转换为其酶作用,但该信号从活性部位传播到远端膜结合结构域的机制在很大程度上是未知的。在这里,显示 N-炔丙基甘氨酸通过将黄素 N(5)原子与赖氨酸 329 的 ε-氨基共价连接不可逆地使 PutA 失活。此外,失活将 PutA 锁定在可能模拟脯氨酸还原的膜相关形式的构象中。失活的 PRODH 结构域的 2.15Å分辨率结构表明,将还原黄素状态广播到远端膜结合结构域的初始事件包括黄素核糖链的主要重排、异咯嗪环的严重(35 度)蝶形弯曲以及涉及黄素 N(5)原子、Arg431 和 Asp370 的静电网络的破坏。该结构还提供了关于与底物结合相关的构象变化的信息。该分析表明,在没有底物的情况下,活性部位不完全组装,并且脯氨酸的结合将保守残基聚集在螺旋 8 和β1-αl 环中,以完成活性部位。

相似文献

5
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.
8
Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
Biochemistry. 2003 May 13;42(18):5469-77. doi: 10.1021/bi0272196.
9
Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine.
Biochemistry. 2008 May 20;47(20):5573-80. doi: 10.1021/bi800055w. Epub 2008 Apr 22.

引用本文的文献

3
Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of -Propargylglycine.
Biochemistry. 2024 Nov 5;63(21):2855-2867. doi: 10.1021/acs.biochem.4c00429. Epub 2024 Oct 22.
4
Computational insights on the hydride and proton transfer mechanisms of L-proline dehydrogenase.
PLoS One. 2023 Nov 15;18(11):e0290901. doi: 10.1371/journal.pone.0290901. eCollection 2023.
5
Therapeutic targeting of HYPDH/PRODH2 with N-propargylglycine offers a Hyperoxaluria treatment opportunity.
Biochim Biophys Acta Mol Basis Dis. 2024 Jan;1870(1):166848. doi: 10.1016/j.bbadis.2023.166848. Epub 2023 Aug 14.
6
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.
8
Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles.
ACS Chem Biol. 2021 Nov 19;16(11):2268-2279. doi: 10.1021/acschembio.1c00427. Epub 2021 Sep 20.
10
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.

本文引用的文献

2
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
J Mol Biol. 2008 Aug 1;381(1):174-88. doi: 10.1016/j.jmb.2008.05.084. Epub 2008 Jun 7.
3
Automated structure solution with the PHENIX suite.
Methods Mol Biol. 2008;426:419-35. doi: 10.1007/978-1-60327-058-8_28.
4
Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine.
Biochemistry. 2008 May 20;47(20):5573-80. doi: 10.1021/bi800055w. Epub 2008 Apr 22.
5
Structural biology of proline catabolism.
Amino Acids. 2008 Nov;35(4):719-30. doi: 10.1007/s00726-008-0062-5. Epub 2008 Mar 28.
6
Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli.
Amino Acids. 2008 Nov;35(4):711-8. doi: 10.1007/s00726-008-0053-6. Epub 2008 Mar 7.
7
Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
J Biol Chem. 2007 May 11;282(19):14316-27. doi: 10.1074/jbc.M700912200. Epub 2007 Mar 7.
9
Scaling and assessment of data quality.
Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82. doi: 10.1107/S0907444905036693. Epub 2005 Dec 14.
10
The integration of macromolecular diffraction data.
Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):48-57. doi: 10.1107/S0907444905039107. Epub 2005 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验