Suppr超能文献

蛙类抗菌肽对大肠杆菌 ATP 合酶的抑制作用。

Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides.

机构信息

Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN 37614, USA.

出版信息

Int J Biol Macromol. 2010 Apr 1;46(3):367-74. doi: 10.1016/j.ijbiomac.2010.01.015. Epub 2010 Jan 25.

Abstract

Previously melittin, the alpha-helical basic honey bee venom peptide, was shown to inhibit F(1)-ATPase by binding at the beta-subunit DELSEED motif of F(1)F(o)-ATP synthase. Herein, we present the inhibitory effects of the basic alpha-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F(1) and membrane bound F(1)F(0)Escherichia coli ATP synthase. We found that the extent of inhibition by amphibian peptides is variable. Whereas MRP-amide inhibited ATPase essentially completely (approximately 96% inhibition), carein 1.8 did not inhibit at all (0% inhibition). Inhibition by other peptides was partial with a range of approximately 13-70%. MRP-amide was also the most potent inhibitor on molar scale (IC(50) approximately 3.25 microM). Presence of an amide group at the c-terminal of peptides was found to be critical in exerting potent inhibition of ATP synthase ( approximately 20-40% additional inhibition). Inhibition was fully reversible and found to be identical in both F(1)F(0) membrane preparations as well as in isolated purified F(1). Interestingly, growth of E. coli was abrogated in the presence of ascaphin-8, aurein 2.2, aurein 2.3, citropin 1.1, dermaseptin, magainin II-amide, MRP, MRP-amide, melittin, or melittin-amide but was unaffected in the presence of carein 1.8, carein 1.9, maculatin 1.1, magainin II, or XT-7. Hence inhibition of F(1)-ATPase and E. coli cell growth by amphibian antimicrobial peptides suggests that their antimicrobial/anticancer properties are in part linked to their actions on ATP synthase.

摘要

先前有研究表明,来自蜜蜂毒液的α-螺旋碱性蜂肽 melittin 通过与 F(1)F(o)-ATP 合酶的β亚基 DELSEED 基序结合,从而抑制 F(1)-ATP 酶。在此,我们展示了碱性α-螺旋两栖动物抗菌肽,如 ascaphin-8、aurein 2.2、aurein 2.3、carein 1.8、carein 1.9、citropin 1.1、dermaseptin、maculatin 1.1、maganin II、MRP、或 XT-7 对纯化的 F(1)和膜结合 F(1)F(0)大肠杆菌 ATP 合酶的抑制作用。我们发现,两栖动物肽的抑制程度是可变的。虽然 MRP-酰胺几乎完全抑制了 ATP 酶(约 96%的抑制),但 carein 1.8 根本没有抑制(0%的抑制)。其他肽的抑制作用是部分的,约为 13-70%。MRP-酰胺在摩尔尺度上也是最有效的抑制剂(IC50 约为 3.25 μM)。我们发现,肽的 C 末端酰胺基团的存在对于发挥对 ATP 合酶的强效抑制作用至关重要(约增加 20-40%的抑制)。抑制作用是完全可逆的,在 F(1)F(0)膜制剂以及分离纯化的 F(1)中均相同。有趣的是,在 ascaphin-8、aurein 2.2、aurein 2.3、citropin 1.1、dermaseptin、maganin II-酰胺、MRP、MRP-酰胺、melittin 或 melittin-酰胺存在的情况下,大肠杆菌的生长被阻断,但在 carein 1.8、carein 1.9、maculatin 1.1、maganin II 或 XT-7 存在的情况下,大肠杆菌的生长不受影响。因此,两栖动物抗菌肽抑制 F(1)-ATP 酶和大肠杆菌细胞生长表明,它们的抗菌/抗癌特性部分与其对 ATP 合酶的作用有关。

相似文献

1
Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides.
Int J Biol Macromol. 2010 Apr 1;46(3):367-74. doi: 10.1016/j.ijbiomac.2010.01.015. Epub 2010 Jan 25.
2
Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase.
Int J Biol Macromol. 2015 Apr;75:37-43. doi: 10.1016/j.ijbiomac.2014.12.047. Epub 2015 Jan 17.
3
Venom peptides cathelicidin and lycotoxin cause strong inhibition of Escherichia coli ATP synthase.
Int J Biol Macromol. 2016 Jun;87:246-51. doi: 10.1016/j.ijbiomac.2016.02.061. Epub 2016 Feb 27.
4
A connection between antimicrobial properties of venom peptides and microbial ATP synthase.
Int J Biol Macromol. 2018 Nov;119:23-31. doi: 10.1016/j.ijbiomac.2018.07.146. Epub 2018 Jul 24.
5
Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner.
Int J Biol Macromol. 2010 Jun;46(5):478-86. doi: 10.1016/j.ijbiomac.2010.03.009. Epub 2010 Mar 25.
6
Glu residues of βDELSEED-motif are essential for peptide binding in Escherichia coli ATP synthase.
Int J Biol Macromol. 2018 Sep;116:977-982. doi: 10.1016/j.ijbiomac.2018.05.118. Epub 2018 May 18.
7
Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria.
Peptides. 2012 Jul;36(1):121-8. doi: 10.1016/j.peptides.2012.04.018. Epub 2012 Apr 28.
8
RV-23, a Melittin-Related Peptide with Cell-Selective Antibacterial Activity and High Hemocompatibility.
J Microbiol Biotechnol. 2016 Jun 28;26(6):1046-56. doi: 10.4014/jmb.1510.10074.
9
Insect venom peptides as potent inhibitors of Escherichia coli ATP synthase.
Int J Biol Macromol. 2020 May 1;150:23-30. doi: 10.1016/j.ijbiomac.2020.02.046. Epub 2020 Feb 6.
10
Effect of structural modulation of polyphenolic compounds on the inhibition of Escherichia coli ATP synthase.
Int J Biol Macromol. 2012 Apr 1;50(3):476-86. doi: 10.1016/j.ijbiomac.2012.01.019. Epub 2012 Jan 20.

引用本文的文献

1
Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria.
BioDrugs. 2023 Sep;37(5):607-623. doi: 10.1007/s40259-023-00608-3. Epub 2023 Jun 10.
2
Gene drive mosquitoes can aid malaria elimination by retarding sporogonic development.
Sci Adv. 2022 Sep 23;8(38):eabo1733. doi: 10.1126/sciadv.abo1733. Epub 2022 Sep 21.
3
Antibiofilm activity of host defence peptides: complexity provides opportunities.
Nat Rev Microbiol. 2021 Dec;19(12):786-797. doi: 10.1038/s41579-021-00585-w. Epub 2021 Jun 28.
4
Potential Inhibitory Effect of 's Venom and of Its Two Main Components-Melittin and PLA-on FF-ATPase.
Antibiotics (Basel). 2020 Nov 18;9(11):824. doi: 10.3390/antibiotics9110824.
6
Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019.
Curr Top Med Chem. 2020;20(32):2984-2998. doi: 10.2174/1568026620666201022143625.
8
Snake Venom Cathelicidins as Natural Antimicrobial Peptides.
Front Pharmacol. 2019 Nov 29;10:1415. doi: 10.3389/fphar.2019.01415. eCollection 2019.
9
Functional importance of αAsp-350 in the catalytic sites of Escherichia coli ATP synthase.
Arch Biochem Biophys. 2019 Sep 15;672:108050. doi: 10.1016/j.abb.2019.07.015. Epub 2019 Jul 19.
10
A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.
Curr Med Chem. 2017 Nov 20;24(35):3894-3906. doi: 10.2174/0929867324666170823125330.

本文引用的文献

2
Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols.
Int J Biol Macromol. 2009 Jul 1;45(1):72-9. doi: 10.1016/j.ijbiomac.2009.04.004. Epub 2009 Apr 16.
4
Role of {alpha}-subunit VISIT-DG sequence residues Ser-347 and Gly-351 in the catalytic sites of Escherichia coli ATP synthase.
J Biol Chem. 2009 Apr 17;284(16):10747-54. doi: 10.1074/jbc.M809209200. Epub 2009 Feb 23.
5
ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas.
Microbiol Mol Biol Rev. 2008 Dec;72(4):590-641, Table of Contents. doi: 10.1128/MMBR.00016-08.
6
Role of alphaPhe-291 residue in the phosphate-binding subdomain of catalytic sites of Escherichia coli ATP synthase.
Arch Biochem Biophys. 2008 Mar 15;471(2):168-75. doi: 10.1016/j.abb.2008.01.013. Epub 2008 Jan 26.
8
Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13632-7. doi: 10.1073/pnas.0706290104. Epub 2007 Aug 13.
9
ATP synthase: motoring to the finish line.
Cell. 2007 Jul 27;130(2):220-1. doi: 10.1016/j.cell.2007.07.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验