Suppr超能文献

切应力通过内皮型一氧化氮合酶的亚细胞去定位促进内皮细胞中一氧化氮的产生:切应力介导血管生成的基础。

Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: A basis for shear stress mediated angiogenesis.

机构信息

Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India.

出版信息

Nitric Oxide. 2010 May 15;22(4):304-15. doi: 10.1016/j.niox.2010.02.004. Epub 2010 Feb 24.

Abstract

This study aims to investigate the role of shear stress in cellular remodeling and angiogenesis with relation to nitric oxide (NO). We observed a 2-fold increase in endothelial cell (EC) migration in relation to actin re-arrangements under 15 dyne/cm(2) shear stress. Blocking NO production inhibited the migration and ring formation of ECs by 6-fold and 5-fold, respectively under shear stress. eNOS-siRNA knockdown technique also ascertained a 3-fold reduction in shear stress mediated ring formation. In ovo artery ligation model with a half and complete flow block for 30 min showed a reduction of angiogenesis by 50% and 70%, respectively. External stimulation with NO donor showed a 2-fold recovery in angiogenesis under both half and complete flow block conditions. NO intensity clustering studies by using Diaminofluorescein diacetate (DAF-2DA) probed endothelial monolayer depicted pattern-changes in NO distribution and cluster formation of ECs under shear stress. Immunofluorescence and live cell studies revealed an altered sub-cellular localization pattern of eNOS and phospho-eNOS under shear stress. In conclusion, shear-induced angiogenesis is mediated by nitric oxide dependent EC migration.

摘要

本研究旨在探讨切应力在细胞重构和血管生成中与一氧化氮(NO)的关系。我们观察到,在 15 达因/平方厘米的切应力下,内皮细胞(EC)的迁移与肌动蛋白重排相关,增加了 2 倍。NO 生成阻断抑制了剪切应力下 EC 的迁移和环形成,分别抑制了 6 倍和 5 倍。eNOS-siRNA 敲低技术也证实了剪切应力介导的环形成减少了 3 倍。在胚胎期动脉结扎模型中,半流和完全血流阻断 30 分钟分别导致血管生成减少 50%和 70%。NO 供体的外部刺激在半流和完全血流阻断条件下均使血管生成恢复了 2 倍。使用二氨基荧光素二乙酸酯(DAF-2DA)进行的 NO 强度聚类研究表明,在剪切应力下,内皮单层的 NO 分布和 EC 簇形成发生了模式变化。免疫荧光和活细胞研究揭示了 eNOS 和磷酸化 eNOS 在剪切应力下的亚细胞定位模式发生了改变。总之,剪切诱导的血管生成是由一氧化氮依赖的内皮细胞迁移介导的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验