Suppr超能文献

NADPH 氧化酶依赖性氧化还原信号通路介导小白菊内酯在前列腺癌细胞中选择性放射增敏作用。

A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells.

机构信息

Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA.

出版信息

Cancer Res. 2010 Apr 1;70(7):2880-90. doi: 10.1158/0008-5472.CAN-09-4572. Epub 2010 Mar 16.

Abstract

Cancer cells are usually under higher oxidative stress compared with normal cells. We hypothesize that introducing additional reactive oxygen species (ROS) insults or suppressing antioxidant capacity may selectively enhance cancer cell killing by oxidative stress-generating agents through stress overload or stress sensitization, whereas normal cells may be able to maintain redox homeostasis under exogenous ROS by adaptive response. Here, we show that parthenolide, a sesquiterpene lactone, selectively exhibits a radiosensitization effect on prostate cancer PC3 cells but not on normal prostate epithelial PrEC cells. Parthenolide causes oxidative stress in PC3 cells but not in PrEC cells, as determined by the oxidation of the ROS-sensitive probe H(2)DCFDA and intracellular reduced thiol and disulfide levels. In PC3 but not PrEC cells, parthenolide activates NADPH oxidase, leading to a decrease in the level of reduced thioredoxin, activation of phosphoinositide 3-kinase/Akt, and consequent FOXO3a phosphorylation, which results in the downregulation of FOXO3a targets antioxidant enzyme manganese superoxide dismutase and catalase. Importantly, when combined with radiation, parthenolide further increases ROS levels in PC3 cells whereas it decreases radiation-induced oxidative stress in PrEC cells, possibly by increasing reduced glutathione levels. Together, the results show that parthenolide selectively activates NADPH oxidase and mediates intense oxidative stress in prostate cancer cells by both increasing ROS generation and decreasing antioxidant defense capacity. The results support the concept of exploiting the intrinsic differences in the redox status of cancer cells and normal cells as targets for selective cancer killing.

摘要

癌细胞通常比正常细胞承受更高的氧化应激。我们假设,通过引入额外的活性氧(ROS)损伤或抑制抗氧化能力,可以通过应激过载或应激敏感化选择性增强氧化应激产生剂对癌细胞的杀伤作用,而正常细胞可能能够通过适应性反应维持外源性 ROS 下的氧化还原稳态。在这里,我们表明,倍半萜内酯小白菊内酯选择性地对前列腺癌 PC3 细胞表现出放射增敏作用,而对正常前列腺上皮细胞 PrEC 细胞则没有。小白菊内酯在 PC3 细胞中引起氧化应激,但在 PrEC 细胞中则没有,这可以通过 ROS 敏感探针 H(2)DCFDA 和细胞内还原型巯基和二硫化物水平的氧化来确定。在 PC3 细胞中,但不在 PrEC 细胞中,小白菊内酯激活 NADPH 氧化酶,导致还原型硫氧还蛋白水平降低,磷酸肌醇 3-激酶/ Akt 激活,随后 FOXO3a 磷酸化,导致 FOXO3a 靶抗氧化酶锰超氧化物歧化酶和过氧化氢酶下调。重要的是,当与辐射联合使用时,小白菊内酯进一步增加了 PC3 细胞中的 ROS 水平,而降低了 PrEC 细胞中辐射诱导的氧化应激,这可能是通过增加还原型谷胱甘肽水平实现的。总之,这些结果表明,小白菊内酯通过增加 ROS 的产生和降低抗氧化防御能力,选择性地激活 NADPH 氧化酶并介导前列腺癌细胞中的强烈氧化应激。这些结果支持了利用癌细胞和正常细胞氧化还原状态内在差异作为选择性杀伤癌细胞的靶点的概念。

相似文献

2
KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells.
Cancer Res. 2013 Jul 15;73(14):4406-17. doi: 10.1158/0008-5472.CAN-12-4297. Epub 2013 May 14.
4
Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation.
Food Funct. 2014 Aug;5(8):1909-14. doi: 10.1039/c4fo00187g.
5
Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
Biochim Biophys Acta. 2014 Jan;1840(1):332-43. doi: 10.1016/j.bbagen.2013.08.005. Epub 2013 Aug 15.
6
Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells.
J Biol Chem. 2016 May 6;291(19):10021-31. doi: 10.1074/jbc.M115.700591. Epub 2016 Mar 21.
10
HZ08 suppresses RelB-activated MnSOD expression and enhances Radiosensitivity of prostate Cancer cells.
J Exp Clin Cancer Res. 2018 Jul 27;37(1):174. doi: 10.1186/s13046-018-0849-5.

引用本文的文献

2
Identification of small molecules that are synthetically lethal upon knockout of the RNA ligase Rlig1 in human cells.
RSC Chem Biol. 2024 Jul 17;5(9):833-840. doi: 10.1039/d4cb00125g. eCollection 2024 Aug 28.
4
Uncovering the Secrets of Prostate Cancer's Radiotherapy Resistance: Advances in Mechanism Research.
Biomedicines. 2023 Jun 3;11(6):1628. doi: 10.3390/biomedicines11061628.
5
Parthenolide Induces ROS-Mediated Apoptosis in Lymphoid Malignancies.
Int J Mol Sci. 2023 May 23;24(11):9167. doi: 10.3390/ijms24119167.
8
Parthenolide induces rapid thiol oxidation that leads to ferroptosis in hepatocellular carcinoma cells.
Front Toxicol. 2022 Dec 14;4:936149. doi: 10.3389/ftox.2022.936149. eCollection 2022.
9
Hydrogen Peroxide Promotes the Production of Radiation-Derived EVs Containing Mitochondrial Proteins.
Antioxidants (Basel). 2022 Oct 27;11(11):2119. doi: 10.3390/antiox11112119.
10
First Discovery of Cholesterol-Lowering Activity of Parthenolide as NPC1L1 Inhibitor.
Molecules. 2022 Sep 23;27(19):6270. doi: 10.3390/molecules27196270.

本文引用的文献

2
NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death.
Biochem Biophys Res Commun. 2008 Dec 19;377(3):775-9. doi: 10.1016/j.bbrc.2008.10.067. Epub 2008 Oct 24.
3
Thiol chemistry and specificity in redox signaling.
Free Radic Biol Med. 2008 Sep 1;45(5):549-61. doi: 10.1016/j.freeradbiomed.2008.05.004. Epub 2008 May 16.
4
The FoxO code.
Oncogene. 2008 Apr 7;27(16):2276-88. doi: 10.1038/onc.2008.21.
5
A brief introduction to FOXOlogy.
Oncogene. 2008 Apr 7;27(16):2258-62. doi: 10.1038/onc.2008.29.
6
Functional interaction between FOXO3a and ATM regulates DNA damage response.
Nat Cell Biol. 2008 Apr;10(4):460-7. doi: 10.1038/ncb1709. Epub 2008 Mar 16.
7
Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.
Cancer Res. 2008 Mar 15;68(6):1777-85. doi: 10.1158/0008-5472.CAN-07-5259.
8
FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts.
J Biol Chem. 2008 Mar 28;283(13):8211-7. doi: 10.1074/jbc.M710610200. Epub 2008 Jan 14.
9
The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity.
Toxicology. 2008 Apr 3;246(1):24-33. doi: 10.1016/j.tox.2007.10.029. Epub 2007 Nov 12.
10
Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1.
Am J Pathol. 2007 Dec;171(6):2021-32. doi: 10.2353/ajpath.2007.061144. Epub 2007 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验