Suppr超能文献

共晶:一种改善活性药物成分物理化学性质的新方法。

Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients.

作者信息

Yadav A V, Shete A S, Dabke A P, Kulkarni P V, Sakhare S S

机构信息

Krishna Institute of Medical Scinces University and Institute of Pharmacy, Karad-415 110, India.

出版信息

Indian J Pharm Sci. 2009 Jul;71(4):359-70. doi: 10.4103/0250-474X.57283.

Abstract

Crystal form can be crucial to the performance of a dosage form. This is especially true for compounds that have intrinsic barriers to drug delivery, such as low aqueous solubility, slow dissolution in gastrointestinal media, low permeability and first-pass metabolism. The nature of the physical form and formulation tends to exhibit the greatest effect on bioavailability parameters of water insoluble compounds that need to be given orally in high doses. An alternative approach available for the enhancement of drug solubility, dissolution and bioavailability is through the application of crystal engineering of co-crystals. The physicochemical properties of the active pharmaceutical ingredients and the bulk material properties can be modified, whilst maintaining the intrinsic activity of the drug molecule. This article covers the advantages of co-crystals over salts, solvates (hydrates), solid dispersions and polymorphs, mechanism of formation of co-crystals, methods of preparation of co-crystals and application of co-crystals to modify physicochemical characteristics of active pharmaceutical ingredients along with the case studies. The intellectual property implications of creating co-crystals are also highly relevant.

摘要

晶型对剂型的性能可能至关重要。对于那些存在药物递送内在障碍的化合物来说尤其如此,比如低水溶性、在胃肠道介质中溶解缓慢、低渗透性以及首过代谢。物理形态和制剂的性质往往对需要高剂量口服的水不溶性化合物的生物利用度参数影响最大。一种可用于提高药物溶解度、溶出度和生物利用度的替代方法是通过共晶体的晶体工程应用。活性药物成分的物理化学性质和原料药性质可以得到改变,同时保持药物分子的内在活性。本文涵盖了共晶体相对于盐、溶剂化物(水合物)、固体分散体和多晶型物的优势、共晶体的形成机制、共晶体的制备方法以及共晶体在改变活性药物成分物理化学特性方面的应用,并伴有案例研究。创造共晶体的知识产权问题也高度相关。

相似文献

1
Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients.
Indian J Pharm Sci. 2009 Jul;71(4):359-70. doi: 10.4103/0250-474X.57283.
2
Pharmaceutical Cocrystals: Regulatory and Strategic Aspects, Design and Development.
Adv Pharm Bull. 2016 Dec;6(4):479-494. doi: 10.15171/apb.2016.062. Epub 2016 Dec 22.
3
The Relevance of Crystal Forms in the Pharmaceutical Field: Sword of Damocles or Innovation Tools?
Int J Mol Sci. 2022 Aug 12;23(16):9013. doi: 10.3390/ijms23169013.
5
Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates.
Adv Drug Deliv Rev. 2007 Jul 30;59(7):617-30. doi: 10.1016/j.addr.2007.05.011. Epub 2007 May 29.
6
State of the Art of Pharmaceutical Solid Forms: from Crystal Property Issues to Nanocrystals Formulation.
ChemMedChem. 2019 Jan 8;14(1):8-23. doi: 10.1002/cmdc.201800612. Epub 2018 Dec 27.
7
Elucidating the effect of crystallization on drug release from amorphous solid dispersions in soluble and insoluble carriers.
Int J Pharm. 2020 Dec 15;591:120005. doi: 10.1016/j.ijpharm.2020.120005. Epub 2020 Oct 24.
9
Crystal Engineering for Enhanced Solubility and Bioavailability of Poorly Soluble Drugs.
Curr Pharm Des. 2018;24(21):2473-2496. doi: 10.2174/1381612824666180712104447.
10
A Comprehensive Insight on Pharmaceutical Co-crystals for Improvement of Aqueous Solubility.
Curr Drug Targets. 2023;24(2):157-170. doi: 10.2174/1389450124666221114095400.

引用本文的文献

1
First Crystal Structure of an Aspartame Cocrystal.
Cryst Growth Des. 2025 Jul 29;25(15):5954-5959. doi: 10.1021/acs.cgd.5c00373. eCollection 2025 Aug 6.
2
Microwave coprocessing of modafinil with Gelucire: Thermal and compression characteristics.
ADMET DMPK. 2025 Jan 19;13(1):2569. doi: 10.5599/admet.2569. eCollection 2025.
3
Development and Evaluation of Fluconazole Co-Crystal for Improved Solubility and Mechanical Properties.
Pharmaceutics. 2025 Mar 14;17(3):371. doi: 10.3390/pharmaceutics17030371.
9
A critical review of Roxadustat formulations, solid state studies, and analytical methodology.
Heliyon. 2023 Jun 1;9(6):e16595. doi: 10.1016/j.heliyon.2023.e16595. eCollection 2023 Jun.
10
A SWOT analysis of nano co-crystals in drug delivery: present outlook and future perspectives.
RSC Adv. 2023 Mar 7;13(11):7339-7351. doi: 10.1039/d3ra00161j. eCollection 2023 Mar 1.

本文引用的文献

1
Crystal structure, crystal morphology, and surface properties of an investigational drug.
Int J Pharm. 2009 Feb 23;368(1-2):76-82. doi: 10.1016/j.ijpharm.2008.09.062. Epub 2008 Oct 22.
2
Solid form screening--a review.
Eur J Pharm Biopharm. 2009 Jan;71(1):23-37. doi: 10.1016/j.ejpb.2008.07.014. Epub 2008 Jul 31.
3
The role of cocrystals in pharmaceutical science.
Drug Discov Today. 2008 May;13(9-10):440-6. doi: 10.1016/j.drudis.2008.03.004. Epub 2008 Apr 22.
4
Assessment of melamine and cyanuric acid toxicity in cats.
J Vet Diagn Invest. 2007 Nov;19(6):616-24. doi: 10.1177/104063870701900602.
5
Enhancement of dissolution rate and bioavailability of aceclofenac: a chitosan-based solvent change approach.
Int J Pharm. 2008 Feb 28;350(1-2):279-90. doi: 10.1016/j.ijpharm.2007.09.006. Epub 2007 Sep 12.
6
Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization.
Pharm Res. 2008 Mar;25(3):530-41. doi: 10.1007/s11095-007-9394-1. Epub 2007 Aug 17.
7
Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates.
Adv Drug Deliv Rev. 2007 Jul 30;59(7):617-30. doi: 10.1016/j.addr.2007.05.011. Epub 2007 May 29.
8
An overview of pharmaceutical cocrystals as intellectual property.
Mol Pharm. 2007 May-Jun;4(3):301-9. doi: 10.1021/mp070001z. Epub 2007 May 4.
9
Performance comparison of a co-crystal of carbamazepine with marketed product.
Eur J Pharm Biopharm. 2007 Aug;67(1):112-9. doi: 10.1016/j.ejpb.2006.12.016. Epub 2006 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验