Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
Inorg Chem. 2010 Jun 21;49(12):5393-406. doi: 10.1021/ic9023053.
The distal nickel site of acetyl-CoA synthase (Ni(d)-ACS) and reduced nickel superoxide dismutase (Ni-SOD) display similar square-planar Ni(II)N(2)S(2) coordination environments. One difference between these two sites, however, is that the nickel ion in Ni-SOD contains a mixed amine/amidate coordination motif while the Ni(d) site in Ni-ACS contains a bisamidate coordination motif. To provide insight into the consequences of the different coordination environments on the properties of the Ni ions, we systematically examined two square-planar Ni(II)N(2)S(2) complexes, one with bisthiolate-bisamidate ligation (Et(4)N)(2)(Ni(L1)).2H(2)O (2) [H(4)L1 = N-(2-mercaptoacetyl)-N'-(2-mercaptoethyl)glycinamide] and another with bisthiolate-amine/amidate ligation K(Ni(HL2)) (3) [H(4)L2 = N-(2''-mercaptoethyl)-2-((2'-mercaptoethyl)amino)acetamide]. Although these two complexes differ only by a single amine versus amidate ligand, their chemical properties are quite different. The stronger in-plane ligand field in the bisamidate complex (Ni(II)(L1))(2-) (2) results in an increase in the energies of the d --> d transitions and a considerably more negative oxidation potential. Furthermore, while the bisamidate complex (Ni(II)(L1))(2-) (2) readily forms a trinuclear species (Et(4)N)(2)({Ni(L1)}(2)Ni).H(2)O (1) and reacts rapidly with O(2), presumably via sulfoxidation, the mixed amine/amidate complex (Ni(II)(HL2))(-) (3) remains monomeric and is stable for days in air. Interestingly, the Ni(III) species of the bisamidate complex formed by chemical oxidation with I(2) can be detected by electron paramagnetic resonance (EPR) spectroscopy while the mixed amine/amidate complex immediately decomposes upon oxidation. To explain these experimentally observed properties, we performed S K-edge X-ray absorption spectroscopy and low-temperature (77 K) electronic absorption measurements as well as both hybrid density functional theory (hybrid-DFT) and spectroscopy oriented configuration interaction (SORCI) calculations. These studies demonstrate that the highest occupied molecular orbital (HOMO) of the bisamidate complex (Ni(II)(L1))(2-) (2) has more Ni character and is significantly destabilized relative to the mixed amine/amidate complex (Ni(II)(HL2))(-) (3) by approximately 6.2 kcal mol(-1). The consequence of this destabilization is manifested in the nucleophilic activation of the doubly filled HOMO, which makes (Ni(II)(L1))(2-) (2) significantly more reactive toward electrophiles such as O(2).
乙酰辅酶 A 合酶的远端镍位点(Ni(d)-ACS)和还原型镍超氧化物歧化酶(Ni-SOD)显示出相似的正方形平面 Ni(II)N(2)S(2)配位环境。然而,这两个位点之间的一个区别是,Ni-SOD 中的镍离子含有混合胺/酰胺配位模式,而 Ni-ACS 中的 Ni(d)位点含有双酰胺配位模式。为了深入了解不同配位环境对 Ni 离子性质的影响,我们系统地研究了两个正方形平面 Ni(II)N(2)S(2)配合物,一个具有双硫醇-双酰胺配体(Et(4)N)(2)(Ni(L1)).2H(2)O (2) [H(4)L1 = N-(2-巯基乙酰基)-N'-(2-巯基乙基)甘氨酰胺],另一个具有双硫醇-胺/酰胺配体 K(Ni(HL2)) (3) [H(4)L2 = N-(2''-巯基乙基)-2-((2'-巯基乙基)氨基)乙酰胺]。尽管这两个配合物仅通过一个单胺与酰胺配体不同,但它们的化学性质却大不相同。双酰胺配合物(Ni(II)(L1))(2-) (2) 的平面内配体场更强,导致 d --> d 跃迁的能量增加,氧化电位变得更负。此外,虽然双酰胺配合物(Ni(II)(L1))(2-) (2) 容易形成三聚体物种(Et(4)N)(2)({Ni(L1)}(2)Ni).H(2)O (1),并迅速与 O(2)反应,可能通过亚砜氧化,而混合胺/酰胺配合物(Ni(II)(HL2))(-) (3) 在空气中保持单体状态并稳定数天。有趣的是,通过 I(2)进行化学氧化形成的双酰胺配合物的 Ni(III)物种可以通过电子顺磁共振 (EPR)光谱检测到,而混合胺/酰胺配合物在氧化时立即分解。为了解释这些实验观察到的性质,我们进行了 S K 边 X 射线吸收光谱和低温(77 K)电子吸收测量以及混合密度泛函理论(混合-DFT)和光谱导向组态相互作用(SORCI)计算。这些研究表明,双酰胺配合物(Ni(II)(L1))(2-) (2) 的最高占据分子轨道(HOMO)具有更多的 Ni 特征,并且相对于混合胺/酰胺配合物(Ni(II)(HL2))(-) (3) 显著不稳定,约为 6.2 kcal mol(-1)。这种失稳的后果表现在对亲核试剂(如 O(2))的双填充 HOMO 的亲核活化上,这使得(Ni(II)(L1))(2-) (2) 对亲电试剂具有显著更高的反应性。