Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, CNRS UMR 6231, Université d'Aix-Marseille II et III, Institut Jean-Roche, Marseille, France.
Hum Mol Genet. 2010 Sep 1;19(17):3372-82. doi: 10.1093/hmg/ddq249. Epub 2010 Jun 21.
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by an expanded CAG tract within the coding region of Huntingtin protein. Mutant Huntingtin (mHtt) is ubiquitously expressed, abundantly in neurons but also significantly in glial cells. Neuron-intrinsic mechanism and alterations in glia-to-neuron communication both contribute to the neuronal dysfunction and death in HD pathology. However, it remains to be determined the role of glial cells in HD pathogenesis. In recent years, development of Drosophila models facilitated the dissection of the cellular and molecular events in polyQ-related diseases. By using genetic approaches in Drosophila, we manipulated the expression levels of mitochondrial uncoupling proteins (UCPs) that regulate production of both ATP and reactive oxygen species in mitochondria. We discovered that enhanced levels of UCPs alleviated the HD phenotype when mHtt was selectively expressed in glia, including defects in locomotor behavior and early death of Drosophila. In contrast, UCPs failed to prevent the HD toxicity in neurons. Increased oxidative stress defense was found to rescue neuron but not glia-induced pathology. Evidence is now emerging that UCPs are fundamental to adapt the energy metabolism in order to meet the metabolic demand. Thus, we propose that UCPs are glioprotective by rescuing energy-dependent functions in glia that are challenged by mHtt. In support of this, increasing glucose entry in glia was found to alleviate glia-induced pathology. Altogether, our data emphasize the importance of energy metabolism in the glial alterations in HD and may lead to a new therapeutic avenue.
亨廷顿病(HD)是一种多聚谷氨酰胺(polyQ)疾病,由亨廷顿蛋白编码区的 CAG 重复序列扩展引起。突变型亨廷顿蛋白(mHtt)广泛表达,在神经元中丰富,但在神经胶质细胞中也显著存在。神经元内在机制和神经胶质细胞与神经元通讯的改变都导致了 HD 病理学中的神经元功能障碍和死亡。然而,胶质细胞在 HD 发病机制中的作用仍有待确定。近年来,果蝇模型的发展促进了对 polyQ 相关疾病中细胞和分子事件的剖析。通过在果蝇中使用遗传方法,我们操纵了线粒体解偶联蛋白(UCPs)的表达水平,这些蛋白调节线粒体中 ATP 和活性氧的产生。我们发现,当 mHtt 选择性地在神经胶质细胞中表达时,UCPs 水平的增强缓解了 HD 表型,包括运动行为缺陷和果蝇的早期死亡。相比之下,UCPs 未能防止神经元中的 HD 毒性。发现增加氧化应激防御可以挽救神经元但不能挽救神经胶质细胞诱导的病变。现在有证据表明,UCPs 对于适应能量代谢以满足代谢需求至关重要。因此,我们提出 UCPs 通过挽救 mHtt 挑战的神经胶质细胞中依赖能量的功能来发挥神经胶质保护作用。支持这一点的是,增加神经胶质细胞中的葡萄糖进入被发现可以减轻神经胶质细胞诱导的病变。总之,我们的数据强调了能量代谢在 HD 中神经胶质改变中的重要性,并可能为新的治疗途径提供依据。