Wang Zhigang, Watt William, Brooks Nathan A, Harris Melissa S, Urban Jan, Boatman Douglas, McMillan Michael, Kahn Michael, Heinrikson Robert L, Finzel Barry C, Wittwer Arthur J, Blinn James, Kamtekar Satwik, Tomasselli Alfredo G
Oligonucleotide Therapeutics Unit, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA 02139, USA.
Biochim Biophys Acta. 2010 Sep;1804(9):1817-31. doi: 10.1016/j.bbapap.2010.05.007. Epub 2010 May 24.
Because of their central role in programmed cell death, the caspases are attractive targets for developing new therapeutics against cancer and autoimmunity, myocardial infarction and ischemic damage, and neurodegenerative diseases. We chose to target caspase-3, an executioner caspase, and caspase-8, an initiator caspase, based on the vast amount of information linking their functions to diseases. Through a structure-based drug design approach, a number of novel beta-strand peptidomimetic compounds were synthesized. Kinetic studies of caspase-3 and caspase-8 inhibition were carried out with these urazole ring-containing irreversible peptidomimetics and a known irreversible caspase inhibitor, Z-VAD-fmk. Using a stopped-flow fluorescence assay, we were able to determine individual kinetic parameters of caspase-3 and caspase-8 inhibition by these inhibitors. Z-VAD-fmk and the peptidomimetic inhibitors inhibit caspase-3 and caspase-8 via a three-step kinetic mechanism. Inhibition of both caspase-3 and caspase-8 by Z-VAD-fmk and of caspase-3 by the peptidomimetic inhibitors proceeds via two rapid equilibrium steps followed by a relatively fast inactivation step. However, caspase-8 inhibition by the peptidomimetics goes through a rapid equilibrium step, a slow-binding reversible step, and an extremely slow inactivation step. The crystal structures of inhibitor complexes of caspases-3 and -8 validate the design of the inhibitors by illustrating in detail how they mimic peptide substrates. One of the caspase-8 structures also shows binding at a secondary, allosteric site, providing a possible route to the development of noncovalent small molecule modulators of caspase activity.
由于胱天蛋白酶在程序性细胞死亡中发挥核心作用,它们成为开发针对癌症、自身免疫性疾病、心肌梗死和缺血性损伤以及神经退行性疾病的新型治疗药物的有吸引力的靶点。基于将胱天蛋白酶-3(一种执行性胱天蛋白酶)和胱天蛋白酶-8(一种起始性胱天蛋白酶)的功能与疾病相联系的大量信息,我们选择将它们作为靶点。通过基于结构的药物设计方法,合成了许多新型的β-链肽模拟化合物。使用这些含唑环的不可逆肽模拟物和一种已知的不可逆胱天蛋白酶抑制剂Z-VAD-fmk,对胱天蛋白酶-3和胱天蛋白酶-8抑制进行了动力学研究。通过停流荧光测定法,我们能够确定这些抑制剂对胱天蛋白酶-3和胱天蛋白酶-8抑制的个体动力学参数。Z-VAD-fmk和肽模拟抑制剂通过三步动力学机制抑制胱天蛋白酶-3和胱天蛋白酶-8。Z-VAD-fmk对胱天蛋白酶-3和胱天蛋白酶-8的抑制以及肽模拟抑制剂对胱天蛋白酶-3的抑制通过两个快速平衡步骤,随后是一个相对快速的失活步骤进行。然而,肽模拟物对胱天蛋白酶-8的抑制经历一个快速平衡步骤、一个慢结合可逆步骤和一个极其缓慢的失活步骤。胱天蛋白酶-3和-8抑制剂复合物的晶体结构通过详细说明它们如何模拟肽底物,验证了抑制剂的设计。其中一个胱天蛋白酶-8结构还显示在一个二级变构位点结合,为开发胱天蛋白酶活性的非共价小分子调节剂提供了一条可能的途径。