Suppr超能文献

分析人工膜系统中 CD44-透明质酸相互作用:揭示高分子量和低分子量透明质酸的独特结合特性。

Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan.

机构信息

Biosurfaces Unit, Centro de Investigación Cooperativa en Biomateriales, Paseo Miramon 182, 20009 Donostia-San Sebastian, Spain.

出版信息

J Biol Chem. 2010 Sep 24;285(39):30170-80. doi: 10.1074/jbc.M110.137562. Epub 2010 Jul 27.

Abstract

CD44 is a major cell surface receptor for the large polydisperse glycosaminoglycan hyaluronan (HA). Binding of the long and flexible HA chains is thought to be stabilized by the multivalent nature of the sugar molecule. In addition, high and low molecular weight forms of HA provoke distinct proinflammatory and anti-inflammatory effects upon binding to CD44 and can deliver either proliferative or antiproliferative signals in appropriate cell types. Despite the importance of such interactions, however, neither the stoichiometry of multivalent HA binding at the cell surface nor the molecular basis for functional distinction between different HA size categories is understood. Here we report on the design of a supported lipid bilayer system that permits quantitative analysis of multivalent binding through presentation of CD44 in a stable, natively oriented manner and at controlled density. Using this system in combination with biophysical techniques, we show that the amount of HA binding to bilayers that are densely coated with CD44 increases as a function of HA size, with half-maximal saturation at ∼30 kDa. Moreover, reversible binding was confined to the smaller HA species (molecular weight of ≤10 kDa), whereas the interaction was essentially irreversible with larger polymers. The amount of bound HA decreased with decreasing receptor surface density, but the stability of binding was not affected. From a physico-chemical perspective, the binding properties of HA share many similarities with the typical behavior of a flexible polymer as it adsorbs onto a homogeneously attractive surface. These findings provide new insight into the multivalent nature of CD44-HA interactions and suggest a molecular basis for the distinct biological properties of different size fractions of hyaluronan.

摘要

CD44 是细胞表面主要的多聚糖受体,可与大型多分散性糖胺聚糖透明质酸(HA)结合。HA 长而灵活的链结合被认为是由糖分子的多价性质稳定的。此外,HA 的高分子量和低分子量形式在与 CD44 结合时会引起明显的促炎和抗炎作用,并在适当的细胞类型中传递增殖或抗增殖信号。然而,尽管这些相互作用很重要,但细胞表面多价 HA 结合的化学计量或不同 HA 大小类别的功能区别的分子基础仍不清楚。在这里,我们报告了一种支持的脂质双层系统的设计,该系统通过以稳定的、天然定向的方式和控制密度呈现 CD44,允许对多价结合进行定量分析。我们使用该系统结合生物物理技术,表明与 CD44 密集涂覆的双层结合的 HA 量随 HA 大小呈函数关系增加,半饱和约为 30 kDa。此外,可逆结合仅限于较小的 HA 种类(分子量≤10 kDa),而与较大的聚合物的相互作用基本上是不可逆的。结合的 HA 量随受体表面密度的降低而降低,但结合的稳定性不受影响。从物理化学的角度来看,HA 的结合特性与柔性聚合物在均匀吸引力表面上吸附的典型行为有许多相似之处。这些发现为 CD44-HA 相互作用的多价性质提供了新的见解,并为不同大小分数的透明质酸的独特生物学特性提供了分子基础。

相似文献

2
The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering.
J Biol Chem. 2012 Dec 14;287(51):43094-107. doi: 10.1074/jbc.M112.349209. Epub 2012 Nov 1.
3
Molecular weight impact on the mechanical forces between hyaluronan and its receptor.
Carbohydr Polym. 2018 Oct 1;197:326-336. doi: 10.1016/j.carbpol.2018.06.015. Epub 2018 Jun 5.
4
Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices.
Acta Biomater. 2017 Mar 1;50:259-270. doi: 10.1016/j.actbio.2016.12.026. Epub 2016 Dec 10.
5
Hyaluronic acid binding to CD44S is indiscriminate of molecular weight.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183348. doi: 10.1016/j.bbamem.2020.183348. Epub 2020 May 16.
6
What is special about 200 kDa hyaluronan that activates hyaluronan receptor signaling?
Glycobiology. 2017 Sep 1;27(9):868-877. doi: 10.1093/glycob/cwx039.
7
Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions.
J Biol Chem. 2024 Sep;300(9):107668. doi: 10.1016/j.jbc.2024.107668. Epub 2024 Aug 14.
8
Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction.
Nat Struct Mol Biol. 2007 Mar;14(3):234-9. doi: 10.1038/nsmb1201. Epub 2007 Feb 11.
9
Inter-α-inhibitor impairs TSG-6-induced hyaluronan cross-linking.
J Biol Chem. 2013 Oct 11;288(41):29642-53. doi: 10.1074/jbc.M113.477422. Epub 2013 Sep 4.
10
Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response.
J Control Release. 2011 Dec 10;156(2):231-8. doi: 10.1016/j.jconrel.2011.06.031. Epub 2011 Jul 2.

引用本文的文献

2
Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions.
J Biol Chem. 2024 Sep;300(9):107668. doi: 10.1016/j.jbc.2024.107668. Epub 2024 Aug 14.
3
Ultrasound-triggered three dimensional hyaluronic acid hydrogel promotes in vitro and in vivo reprogramming into induced pluripotent stem cells.
Bioact Mater. 2024 May 9;38:331-345. doi: 10.1016/j.bioactmat.2024.05.011. eCollection 2024 Aug.
4
A review of the current state of natural biomaterials in wound healing applications.
Front Bioeng Biotechnol. 2024 Mar 27;12:1309541. doi: 10.3389/fbioe.2024.1309541. eCollection 2024.
5
Efficacy of hyaluronic acid in the treatment of nasal inflammatory diseases: a systematic review and meta-analysis.
Front Pharmacol. 2024 Feb 7;15:1350063. doi: 10.3389/fphar.2024.1350063. eCollection 2024.
6
Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma.
Heliyon. 2024 Jan 18;10(2):e24667. doi: 10.1016/j.heliyon.2024.e24667. eCollection 2024 Jan 30.
8
Effect of natural polymer materials on skin healing based on internal wound microenvironment: a review.
Front Chem. 2023 Sep 5;11:1257915. doi: 10.3389/fchem.2023.1257915. eCollection 2023.
9
CD44 Modulates Cell Migration and Invasion in Ewing Sarcoma Cells.
Int J Mol Sci. 2023 Jul 21;24(14):11774. doi: 10.3390/ijms241411774.
10
Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy.
Pharmaceutics. 2023 Jun 16;15(6):1751. doi: 10.3390/pharmaceutics15061751.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
2
Ultrathin nucleoporin phenylalanine-glycine repeat films and their interaction with nuclear transport receptors.
EMBO Rep. 2010 May;11(5):366-72. doi: 10.1038/embor.2010.34. Epub 2010 Apr 9.
3
Peripheral protein organization and its influence on lipid diffusion in biomimetic membranes.
ACS Chem Biol. 2010 Apr 16;5(4):393-403. doi: 10.1021/cb900303s.
4
Quantum dot labeling based on near-field optical imaging of CD44 molecules.
Micron. 2010 Apr;41(3):198-202. doi: 10.1016/j.micron.2009.11.002. Epub 2009 Nov 11.
6
Dissipation in films of adsorbed nanospheres studied by quartz crystal microbalance (QCM).
Anal Chem. 2009 Oct 1;81(19):8167-76. doi: 10.1021/ac901381z.
7
On the adsorption behavior of biotin-binding proteins on gold and silica.
Langmuir. 2010 Jan 19;26(2):1029-34. doi: 10.1021/la902226b.
8
CD44 costimulation promotes FoxP3+ regulatory T cell persistence and function via production of IL-2, IL-10, and TGF-beta.
J Immunol. 2009 Aug 15;183(4):2232-41. doi: 10.4049/jimmunol.0900191. Epub 2009 Jul 27.
9
Viscoelastic response of a model endothelial glycocalyx.
Phys Biol. 2009 Jul 1;6(2):025014. doi: 10.1088/1478-3975/6/2/025014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验