Suppr超能文献

Na,K-ATPaseβ1 和β2 亚基在 Madin-Darby 犬肾细胞内质网中成熟的不同途径。

Diverse pathways for maturation of the Na,K-ATPase β1 and β2 subunits in the endoplasmic reticulum of Madin-Darby canine kidney cells.

机构信息

Department of Physiology, School of Medicine, UCLA and Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California 90073, USA.

出版信息

J Biol Chem. 2010 Dec 10;285(50):39289-302. doi: 10.1074/jbc.M110.172858. Epub 2010 Oct 11.

Abstract

Proper folding of the Na,K-ATPase β subunits followed by assembly with the α subunits is necessary for their export from the endoplasmic reticulum (ER). Here we examine roles of the ER lectin chaperone, calnexin, and non-lectin chaperone, BiP, in folding and quality control of the β(1) and β(2) subunits in Madin-Darby canine kidney cells. Short term prevention of glycan-calnexin interactions by castanospermine slightly increases ER retention of β(1), suggesting minor involvement of calnexin in subunit folding. However, both prolonged incubation with castanospermine and removal of N-glycosylation sites do not affect the α(1)-assembly or trafficking of β(1) but increase the amount of the β(1)-bound BiP, showing that BiP can compensate for calnexin in assisting β(1) folding. In contrast to β(1), prevention of either N-glycosylation or glycan-calnexin interactions abolishes the α(1)-assembly and export of β(2) from the ER despite increased β(2)-BiP binding. Mutations in the α(1)-interacting regions of β(1) and β(2) subunits impair α(1) assembly but do not affect folding of the β subunits tested by their sensitivity to trypsin. At the same time, these mutations increase the amount of β-bound BiP but not of β-bound calnexin and increase ER retention of both β-isoforms. BiP, therefore, prevents the ER export of folded but α(1)-unassembled β subunits. These α(1)-unassembled β subunits are degraded faster than α(1)-bound β subunits, preventing ER overload. In conclusion, folding of the β(1) and β(2) subunits is assisted predominantly by BiP and calnexin, respectively. Folded β(1) and β(2) either assemble with α(1) or bind BiP. The α(1)-bound β subunits traffic to the Golgi, whereas BiP-bound β subunits are retained and degraded in the ER.

摘要

钠钾-ATP 酶β亚基的正确折叠,随后与α亚基组装,对于它们从内质网(ER)中的输出是必要的。在这里,我们研究了内质网凝集素伴侣蛋白 calnexin 和非凝集素伴侣蛋白 BiP 在 Madin-Darby 犬肾细胞中β(1)和β(2)亚基折叠和质量控制中的作用。短暂阻止糖基-calenxin 相互作用用 castanospermine 略微增加了β(1)在 ER 中的滞留,表明 calnexin 对亚基折叠的参与较小。然而,无论是用 castanospermine 长时间孵育还是去除 N-糖基化位点,都不会影响β(1)与α(1)的组装或转运,但会增加β(1)-结合 BiP 的量,表明 BiP 可以替代 calnexin 协助β(1)折叠。与β(1)相反,尽管β(2)与 BiP 的结合增加,但阻止 N-糖基化或糖基-calenxin 相互作用会使β(2)从 ER 中丧失α(1)-组装和出口。在β(1)和β(2)亚基的α(1)-相互作用区域中的突变会损害α(1)组装,但不会影响所测试的β 亚基的折叠,这可以通过它们对胰蛋白酶的敏感性来判断。同时,这些突变增加了β 结合 BiP 的量,但不增加β 结合 calnexin 的量,并增加了两种β 同工型在 ER 中的滞留。因此,BiP 防止折叠但α(1)-未组装的β 亚基从 ER 中输出。与α(1)结合的β 亚基比α(1)-未结合的β 亚基降解得更快,从而防止 ER 过载。总之,β(1)和β(2)亚基的折叠主要分别由 BiP 和 calnexin 辅助。折叠的β(1)和β(2)要么与α(1)组装,要么与 BiP 结合。α(1)结合的β 亚基转运到高尔基体,而 BiP 结合的β 亚基则保留在 ER 中并降解。

相似文献

1
Diverse pathways for maturation of the Na,K-ATPase β1 and β2 subunits in the endoplasmic reticulum of Madin-Darby canine kidney cells.
J Biol Chem. 2010 Dec 10;285(50):39289-302. doi: 10.1074/jbc.M110.172858. Epub 2010 Oct 11.
2
N-glycan-dependent quality control of the Na,K-ATPase beta(2) subunit.
Biochemistry. 2010 Apr 13;49(14):3116-28. doi: 10.1021/bi100115a.
4
infection impairs chaperone-assisted maturation of Na-K-ATPase in gastric epithelium.
Am J Physiol Gastrointest Liver Physiol. 2020 May 1;318(5):G931-G945. doi: 10.1152/ajpgi.00266.2019. Epub 2020 Mar 16.
5
Apical transport and folding of prostate-specific membrane antigen occurs independent of glycan processing.
J Biol Chem. 2006 Feb 10;281(6):3505-12. doi: 10.1074/jbc.M509460200. Epub 2005 Oct 12.
6
beta-Subunit overexpression alters the stoicheometry of assembled Na-K-ATPase subunits in MDCK cells.
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1314-23. doi: 10.1152/ajprenal.90406.2008. Epub 2008 Aug 13.
9
Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER.
J Cell Sci. 2004 Jun 15;117(Pt 14):2897-908. doi: 10.1242/jcs.01141. Epub 2004 May 25.
10
Maturation of the Na,K-ATPase in the Endoplasmic Reticulum in Health and Disease.
J Membr Biol. 2021 Dec;254(5-6):447-457. doi: 10.1007/s00232-021-00184-z. Epub 2021 Jun 10.

引用本文的文献

2
Identified and potential internalization signals involved in trafficking and regulation of Na/K ATPase activity.
Mol Cell Biochem. 2024 Jul;479(7):1583-1598. doi: 10.1007/s11010-023-04831-y. Epub 2023 Aug 27.
3
Maturation of the Na,K-ATPase in the Endoplasmic Reticulum in Health and Disease.
J Membr Biol. 2021 Dec;254(5-6):447-457. doi: 10.1007/s00232-021-00184-z. Epub 2021 Jun 10.
4
Molecular mechanisms of Na,K-ATPase dysregulation driving alveolar epithelial barrier failure in severe COVID-19.
Am J Physiol Lung Cell Mol Physiol. 2021 Jun 1;320(6):L1186-L1193. doi: 10.1152/ajplung.00056.2021. Epub 2021 Mar 9.
5
infection impairs chaperone-assisted maturation of Na-K-ATPase in gastric epithelium.
Am J Physiol Gastrointest Liver Physiol. 2020 May 1;318(5):G931-G945. doi: 10.1152/ajpgi.00266.2019. Epub 2020 Mar 16.
7
In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation.
J Autoimmun. 2020 Feb;107:102355. doi: 10.1016/j.jaut.2019.102355. Epub 2019 Nov 12.
8
Identification of the retinoschisin-binding site on the retinal Na/K-ATPase.
PLoS One. 2019 May 2;14(5):e0216320. doi: 10.1371/journal.pone.0216320. eCollection 2019.
9
A CASPR1-ATP1B3 protein interaction modulates plasma membrane localization of Na/K-ATPase in brain microvascular endothelial cells.
J Biol Chem. 2019 Apr 19;294(16):6375-6386. doi: 10.1074/jbc.RA118.006263. Epub 2019 Feb 21.
10
Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis.
Chem Rev. 2019 May 8;119(9):5537-5606. doi: 10.1021/acs.chemrev.8b00532. Epub 2019 Jan 4.

本文引用的文献

1
Sorting things out through endoplasmic reticulum quality control.
Mol Membr Biol. 2010 Nov;27(8):412-27. doi: 10.3109/09687688.2010.495354. Epub 2010 Jun 17.
2
Protein quality control in the ER: the recognition of misfolded proteins.
Semin Cell Dev Biol. 2010 Jul;21(5):500-11. doi: 10.1016/j.semcdb.2010.03.006. Epub 2010 Mar 25.
3
N-glycan-dependent quality control of the Na,K-ATPase beta(2) subunit.
Biochemistry. 2010 Apr 13;49(14):3116-28. doi: 10.1021/bi100115a.
5
The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity.
Biometals. 2010 Oct;23(5):941-50. doi: 10.1007/s10534-010-9296-2. Epub 2010 Feb 4.
6
ERAD substrates: which way out?
Semin Cell Dev Biol. 2010 Jul;21(5):526-32. doi: 10.1016/j.semcdb.2009.12.007. Epub 2009 Dec 22.
7
Life and death of a BiP substrate.
Semin Cell Dev Biol. 2010 Jul;21(5):472-8. doi: 10.1016/j.semcdb.2009.12.008. Epub 2009 Dec 21.
9
Crystal structure of the sodium-potassium pump at 2.4 A resolution.
Nature. 2009 May 21;459(7245):446-50. doi: 10.1038/nature07939.
10
Current status of cadmium as an environmental health problem.
Toxicol Appl Pharmacol. 2009 Aug 1;238(3):201-8. doi: 10.1016/j.taap.2009.04.020. Epub 2009 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验