Department of Physiology, School of Medicine, UCLA and Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California 90073, USA.
J Biol Chem. 2010 Dec 10;285(50):39289-302. doi: 10.1074/jbc.M110.172858. Epub 2010 Oct 11.
Proper folding of the Na,K-ATPase β subunits followed by assembly with the α subunits is necessary for their export from the endoplasmic reticulum (ER). Here we examine roles of the ER lectin chaperone, calnexin, and non-lectin chaperone, BiP, in folding and quality control of the β(1) and β(2) subunits in Madin-Darby canine kidney cells. Short term prevention of glycan-calnexin interactions by castanospermine slightly increases ER retention of β(1), suggesting minor involvement of calnexin in subunit folding. However, both prolonged incubation with castanospermine and removal of N-glycosylation sites do not affect the α(1)-assembly or trafficking of β(1) but increase the amount of the β(1)-bound BiP, showing that BiP can compensate for calnexin in assisting β(1) folding. In contrast to β(1), prevention of either N-glycosylation or glycan-calnexin interactions abolishes the α(1)-assembly and export of β(2) from the ER despite increased β(2)-BiP binding. Mutations in the α(1)-interacting regions of β(1) and β(2) subunits impair α(1) assembly but do not affect folding of the β subunits tested by their sensitivity to trypsin. At the same time, these mutations increase the amount of β-bound BiP but not of β-bound calnexin and increase ER retention of both β-isoforms. BiP, therefore, prevents the ER export of folded but α(1)-unassembled β subunits. These α(1)-unassembled β subunits are degraded faster than α(1)-bound β subunits, preventing ER overload. In conclusion, folding of the β(1) and β(2) subunits is assisted predominantly by BiP and calnexin, respectively. Folded β(1) and β(2) either assemble with α(1) or bind BiP. The α(1)-bound β subunits traffic to the Golgi, whereas BiP-bound β subunits are retained and degraded in the ER.
钠钾-ATP 酶β亚基的正确折叠,随后与α亚基组装,对于它们从内质网(ER)中的输出是必要的。在这里,我们研究了内质网凝集素伴侣蛋白 calnexin 和非凝集素伴侣蛋白 BiP 在 Madin-Darby 犬肾细胞中β(1)和β(2)亚基折叠和质量控制中的作用。短暂阻止糖基-calenxin 相互作用用 castanospermine 略微增加了β(1)在 ER 中的滞留,表明 calnexin 对亚基折叠的参与较小。然而,无论是用 castanospermine 长时间孵育还是去除 N-糖基化位点,都不会影响β(1)与α(1)的组装或转运,但会增加β(1)-结合 BiP 的量,表明 BiP 可以替代 calnexin 协助β(1)折叠。与β(1)相反,尽管β(2)与 BiP 的结合增加,但阻止 N-糖基化或糖基-calenxin 相互作用会使β(2)从 ER 中丧失α(1)-组装和出口。在β(1)和β(2)亚基的α(1)-相互作用区域中的突变会损害α(1)组装,但不会影响所测试的β 亚基的折叠,这可以通过它们对胰蛋白酶的敏感性来判断。同时,这些突变增加了β 结合 BiP 的量,但不增加β 结合 calnexin 的量,并增加了两种β 同工型在 ER 中的滞留。因此,BiP 防止折叠但α(1)-未组装的β 亚基从 ER 中输出。与α(1)结合的β 亚基比α(1)-未结合的β 亚基降解得更快,从而防止 ER 过载。总之,β(1)和β(2)亚基的折叠主要分别由 BiP 和 calnexin 辅助。折叠的β(1)和β(2)要么与α(1)组装,要么与 BiP 结合。α(1)结合的β 亚基转运到高尔基体,而 BiP 结合的β 亚基则保留在 ER 中并降解。