Suppr超能文献

评估因诱导而导致药物-药物相互作用的模型。

Evaluation of models for predicting drug-drug interactions due to induction.

机构信息

Pfizer Global Research and Development, Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Eastern Point Road, Groton, CT 06340, USA.

出版信息

Expert Opin Drug Metab Toxicol. 2010 Nov;6(11):1399-416. doi: 10.1517/17425255.2010.516251.

Abstract

IMPORTANCE OF THE FIELD

Drug-drug interactions caused by induction of metabolizing enzymes, particularly CYP3A, can impact the efficacy and safety of co-administered drugs. It is, therefore, important to understand a new compound's potential for enzyme induction and to understand how to use the induction data generated in vitro to predict potential for drug-drug interactions in vivo.

AREAS COVERED IN THIS REVIEW

Recent advances in methods for using in vitro data to predict potential for CYP3A induction in vivo are reviewed.

WHAT THE READER WILL GAIN

The reader will gain a comprehensive understanding of the advantages and disadvantages of various prediction methods for induction and be able to directly compare different methods using a common in vitro data set.

TAKE HOME MESSAGE

The various methods for predicting clinical CYP3A induction from in vitro induction data all have demonstrated utility; it is the authors' opinion that the correlation-based approaches offer as good or better predictivity and have simpler input requirements than more complex approaches. Of the different correlation approaches, the relatively simple unbound C(max)/EC(50) or AUC/EC(50) approaches are the simplest and yet show the best correlation to the observed clinical data. While the approaches discussed herein represent an improvement in our understanding of the predictive value of in vitro induction data, it is important to recognize that there is still room for improvement in quantitative prediction of magnitude of drug interactions due to induction.

摘要

重要性领域

由代谢酶诱导引起的药物-药物相互作用,特别是 CYP3A,可能会影响同时给予的药物的疗效和安全性。因此,了解新化合物诱导酶的潜力以及了解如何使用体外产生的诱导数据来预测体内药物-药物相互作用的潜力非常重要。

本篇综述涵盖了

使用体外数据预测体内 CYP3A 诱导潜力的最新进展。

读者将获得什么

读者将全面了解各种诱导预测方法的优缺点,并能够使用共同的体外数据集直接比较不同的方法。

带回家的信息

从体外诱导数据预测临床 CYP3A 诱导的各种方法都具有实用性;作者认为,基于相关性的方法具有与更好的预测性或与更复杂的方法相同的预测性,并且输入要求更简单。在不同的相关方法中,相对简单的未结合 C(max)/EC(50)或 AUC/EC(50)方法最简单,但与观察到的临床数据相关性最好。虽然本文讨论的方法代表了我们对体外诱导数据预测价值的理解的提高,但重要的是要认识到,由于诱导,定量预测药物相互作用的程度仍有改进的空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验