Suppr超能文献

追踪一种形成生物膜的细菌的驯化过程。

Tracing the domestication of a biofilm-forming bacterium.

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

J Bacteriol. 2011 Apr;193(8):2027-34. doi: 10.1128/JB.01542-10. Epub 2011 Jan 28.

Abstract

Over the course of more than a century of laboratory experimentation, Bacillus subtilis has become "domesticated," losing its ability to carry out many behaviors characteristic of its wild ancestors. One such characteristic is the ability to form architecturally complex communities, referred to as biofilms. Previous work has shown that the laboratory strain 168 forms markedly attenuated biofilms compared with the wild strain NCIB3610 (3610), even after repair of a mutation in sfp (a gene involved in surfactin production) previously known to impair biofilm formation. Here, we show that in addition to the sfp mutation, mutations in epsC, swrA, and degQ are necessary and sufficient to explain the inability of the laboratory strain to produce robust biofilms. Finally, we show that the architecture of the biofilm is markedly influenced by a large plasmid present in 3610 but not 168 and that the effect of the plasmid can be attributed to a gene we designate rapP. When rapP is introduced into 168 together with wild-type alleles of sfp, epsC, swrA, and degQ, the resulting repaired laboratory strain forms biofilms that are as robust as and essentially indistinguishable in architecture from those of the wild strain, 3610. Thus, domestication of B. subtilis involved the accumulation of four mutations and the loss of a plasmid-borne gene.

摘要

在一个多世纪的实验室实验过程中,枯草芽孢杆菌已经被“驯化”,失去了许多其野生祖先所具有的行为能力。其中一个特征是形成结构复杂的群落的能力,称为生物膜。先前的工作表明,与野生菌株 NCIB3610(3610)相比,实验室菌株 168 形成的生物膜明显减弱,即使在修复先前已知会损害生物膜形成的 sfp(涉及表面活性剂产生的基因)突变后也是如此。在这里,我们表明,除了 sfp 突变外,epsC、swrA 和 degQ 的突变是解释实验室菌株无法产生健壮生物膜的必要和充分条件。最后,我们表明,生物膜的结构明显受到存在于 3610 中但不存在于 168 中的大质粒的影响,并且质粒的影响可以归因于我们指定为 rapP 的基因。当 rapP 与 sfp、epsC、swrA 和 degQ 的野生型等位基因一起引入 168 时,修复后的实验室菌株形成的生物膜与野生菌株 3610 的生物膜一样健壮且在结构上基本无法区分。因此,枯草芽孢杆菌的驯化涉及四个突变的积累和一个质粒携带基因的丢失。

相似文献

1
Tracing the domestication of a biofilm-forming bacterium.
J Bacteriol. 2011 Apr;193(8):2027-34. doi: 10.1128/JB.01542-10. Epub 2011 Jan 28.
4
A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence.
J Bacteriol. 2013 May;195(10):2437-48. doi: 10.1128/JB.02030-12. Epub 2013 Mar 22.
5
The Large pBS32/pLS32 Plasmid of Ancestral Bacillus subtilis.
J Bacteriol. 2020 Aug 25;202(18). doi: 10.1128/JB.00290-20.
6
DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2.
Microbiol Res. 2015 Sep;178:42-50. doi: 10.1016/j.micres.2015.06.006. Epub 2015 Jul 2.
7
Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium.
Microbiology (Reading). 2016 Nov;162(11):1922-1932. doi: 10.1099/mic.0.000371. Epub 2016 Sep 13.
8
Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168.
J Biotechnol. 2007 Jan 10;127(3):503-7. doi: 10.1016/j.jbiotec.2006.07.013. Epub 2006 Jul 27.
9
Genes involved in formation of structured multicellular communities by Bacillus subtilis.
J Bacteriol. 2004 Jun;186(12):3970-9. doi: 10.1128/JB.186.12.3970-3979.2004.
10
A master regulator for biofilm formation by Bacillus subtilis.
Mol Microbiol. 2005 Feb;55(3):739-49. doi: 10.1111/j.1365-2958.2004.04440.x.

引用本文的文献

2
An exciting future for microbial molecular biology and physiology.
mBio. 2025 Aug 13;16(8):e0069425. doi: 10.1128/mbio.00694-25. Epub 2025 Jun 30.
3
Shining Light on Oral Biofilm Fluorescence In Situ Hybridization (FISH): Probing the Accuracy of In Situ Biogeography Studies.
Mol Oral Microbiol. 2025 Aug;40(4):137-146. doi: 10.1111/omi.12494. Epub 2025 Apr 30.
4
Protein Homeostasis Impairment Alters Phenotypic Heterogeneity of Biofilm Communities.
Mol Microbiol. 2025 Jul;124(1):1-19. doi: 10.1111/mmi.15366. Epub 2025 Apr 17.
7
Streptomyces secretes a siderophore that sensitizes competitor bacteria to phage infection.
Nat Microbiol. 2025 Feb;10(2):362-373. doi: 10.1038/s41564-024-01910-8. Epub 2025 Jan 8.
8
Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains.
Nat Commun. 2024 Nov 5;15(1):9567. doi: 10.1038/s41467-024-53992-x.
9
Flagellar point mutation causes social aggregation in laboratory-adapted under conditions that promote swimming.
J Bacteriol. 2024 Oct 24;206(10):e0019924. doi: 10.1128/jb.00199-24. Epub 2024 Sep 9.
10
Nature should be the model for microbial sciences.
J Bacteriol. 2024 Sep 19;206(9):e0022824. doi: 10.1128/jb.00228-24. Epub 2024 Aug 19.

本文引用的文献

3
Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):280-5. doi: 10.1073/pnas.0810940106. Epub 2008 Dec 29.
4
The origins of 168, W23, and other Bacillus subtilis legacy strains.
J Bacteriol. 2008 Nov;190(21):6983-95. doi: 10.1128/JB.00722-08. Epub 2008 Aug 22.
6
Bacillus subtilis genome diversity.
J Bacteriol. 2007 Feb;189(3):1163-70. doi: 10.1128/JB.01343-06. Epub 2006 Nov 17.
7
TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE.
Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8. doi: 10.1073/pnas.44.10.1072.
8
A major protein component of the Bacillus subtilis biofilm matrix.
Mol Microbiol. 2006 Feb;59(4):1229-38. doi: 10.1111/j.1365-2958.2005.05020.x.
9
Targets of the master regulator of biofilm formation in Bacillus subtilis.
Mol Microbiol. 2006 Feb;59(4):1216-28. doi: 10.1111/j.1365-2958.2005.05019.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验