Suppr超能文献

端粒功能障碍导致代谢和线粒体功能受损。

Telomere dysfunction induces metabolic and mitochondrial compromise.

机构信息

Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.

出版信息

Nature. 2011 Feb 17;470(7334):359-65. doi: 10.1038/nature09787. Epub 2011 Feb 9.

Abstract

Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.

摘要

端粒功能障碍激活 p53 介导的细胞生长停滞、衰老和凋亡,导致高周转率组织进行性萎缩和功能下降。端粒功能障碍对许多组织的更广泛的不利影响,包括更静止的系统,促使转录组网络分析确定在造血干细胞、心脏和肝脏中起作用的共同机制。这些无偏研究揭示了过氧化物酶体增殖物激活受体γ、共激活因子 1 阿尔法和贝塔(PGC-1α 和 PGC-1β,也称为 Ppargc1a 和 Ppargc1b)及其下游网络在端粒酶逆转录酶(Tert)或端粒酶 RNA 成分(Terc)基因缺失的小鼠中受到深刻抑制。与 PGCs 作为线粒体生理学和代谢的主调节因子一致,端粒功能障碍与线粒体生物发生和功能受损、糖异生减少、心肌病和活性氧增加有关。在端粒功能障碍的情况下,强制表达 Tert 或 PGC-1α 或生殖系删除 p53(也称为 Trp53)可大大恢复 PGC 网络表达、线粒体呼吸、心脏功能和糖异生。我们证明端粒功能障碍激活 p53,p53 反过来结合并抑制 PGC-1α 和 PGC-1β 启动子,从而在端粒和线粒体生物学之间建立直接联系。我们提出,这种端粒-p53-PGC 轴有助于组织和代谢衰竭,并在端粒功能障碍的情况下导致机体适应能力下降。

相似文献

1
Telomere dysfunction induces metabolic and mitochondrial compromise.
Nature. 2011 Feb 17;470(7334):359-65. doi: 10.1038/nature09787. Epub 2011 Feb 9.
2
Telomeres and mitochondria in the aging heart.
Circ Res. 2012 Apr 27;110(9):1226-37. doi: 10.1161/CIRCRESAHA.111.246868.
5
PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases.
Cell Rep. 2015 Sep 1;12(9):1391-9. doi: 10.1016/j.celrep.2015.07.047. Epub 2015 Aug 20.
6
Cell biology: Ageing theories unified.
Nature. 2011 Feb 17;470(7334):342-3. doi: 10.1038/nature09896. Epub 2011 Feb 9.
8
BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice.
J Ethnopharmacol. 2022 Jan 10;282:114653. doi: 10.1016/j.jep.2021.114653. Epub 2021 Sep 20.

引用本文的文献

1
The potential of mitochondrial transfer as the modifying therapy for osteoarthritis.
Front Cell Dev Biol. 2025 Aug 26;13:1643141. doi: 10.3389/fcell.2025.1643141. eCollection 2025.
2
Glycan dysregulation as one of major metabolic subtypes is associated with TERC overexpression and poor outcomes in cervical cancer.
Front Immunol. 2025 Aug 25;16:1585647. doi: 10.3389/fimmu.2025.1585647. eCollection 2025.
5
Mitochondrial sirtuins, key regulators of aging.
Life Med. 2025 Jun 9;4(4):lnaf019. doi: 10.1093/lifemedi/lnaf019. eCollection 2025 Aug.
6
Integrative effects of Telomere Length, Epigenetic Age, and Mitochondrial DNA abundance in Alzheimer's Disease.
medRxiv. 2025 Jul 17:2025.07.16.25331683. doi: 10.1101/2025.07.16.25331683.
9
Aging-Related Obesity: Unveiling Mitochondrial and Metabolic Dysfunction.
Curr Nutr Rep. 2025 Jul 24;14(1):94. doi: 10.1007/s13668-025-00685-6.
10
Mitochondrial dysfunction and aging: multidimensional mechanisms and therapeutic strategies.
Biogerontology. 2025 Jul 9;26(4):142. doi: 10.1007/s10522-025-10273-4.

本文引用的文献

1
Linking functional decline of telomeres, mitochondria and stem cells during ageing.
Nature. 2010 Mar 25;464(7288):520-8. doi: 10.1038/nature08982.
2
PGC-1α and myokines in the aging muscle - a mini-review.
Gerontology. 2011;57(1):37-43. doi: 10.1159/000281883. Epub 2010 Feb 4.
4
Telomere length in atherosclerosis and diabetes.
Atherosclerosis. 2010 Mar;209(1):35-8. doi: 10.1016/j.atherosclerosis.2009.12.021. Epub 2009 Dec 28.
5
An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA.
Nature. 2009 Sep 10;461(7261):230-5. doi: 10.1038/nature08283. Epub 2009 Aug 23.
6
Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect.
Cell. 2009 Jun 26;137(7):1247-58. doi: 10.1016/j.cell.2009.04.014.
7
The coordination of nuclear and mitochondrial communication during aging and calorie restriction.
Ageing Res Rev. 2009 Jul;8(3):173-88. doi: 10.1016/j.arr.2009.03.003. Epub 2009 Mar 27.
8
Bmi1 regulates mitochondrial function and the DNA damage response pathway.
Nature. 2009 May 21;459(7245):387-392. doi: 10.1038/nature08040. Epub 2009 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验