Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
Nature. 2011 Feb 17;470(7334):359-65. doi: 10.1038/nature09787. Epub 2011 Feb 9.
Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.
端粒功能障碍激活 p53 介导的细胞生长停滞、衰老和凋亡,导致高周转率组织进行性萎缩和功能下降。端粒功能障碍对许多组织的更广泛的不利影响,包括更静止的系统,促使转录组网络分析确定在造血干细胞、心脏和肝脏中起作用的共同机制。这些无偏研究揭示了过氧化物酶体增殖物激活受体γ、共激活因子 1 阿尔法和贝塔(PGC-1α 和 PGC-1β,也称为 Ppargc1a 和 Ppargc1b)及其下游网络在端粒酶逆转录酶(Tert)或端粒酶 RNA 成分(Terc)基因缺失的小鼠中受到深刻抑制。与 PGCs 作为线粒体生理学和代谢的主调节因子一致,端粒功能障碍与线粒体生物发生和功能受损、糖异生减少、心肌病和活性氧增加有关。在端粒功能障碍的情况下,强制表达 Tert 或 PGC-1α 或生殖系删除 p53(也称为 Trp53)可大大恢复 PGC 网络表达、线粒体呼吸、心脏功能和糖异生。我们证明端粒功能障碍激活 p53,p53 反过来结合并抑制 PGC-1α 和 PGC-1β 启动子,从而在端粒和线粒体生物学之间建立直接联系。我们提出,这种端粒-p53-PGC 轴有助于组织和代谢衰竭,并在端粒功能障碍的情况下导致机体适应能力下降。