Suppr超能文献

细胞形状和基质刚性都能调节细胞硬度。

Cell shape and substrate rigidity both regulate cell stiffness.

机构信息

Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Biophys J. 2011 Mar 2;100(5):L25-7. doi: 10.1016/j.bpj.2010.12.3744.

Abstract

Cells from many different tissues sense the stiffness and spatial patterning of their microenvironment to modulate their shape and cortical stiffness. It is currently unknown how substrate stiffness, cell shape, and cell stiffness modulate or interact with one another. Here, we use microcontact printing and microfabricated arrays of elastomeric posts to independently and simultaneously control cell shape and substrate stiffness. Our experiments show that cell cortical stiffness increases as a function of both substrate stiffness and spread area. For soft substrates, the influence of substrate stiffness on cell cortical stiffness is more prominent than that of cell shape, since increasing adherent area does not lead to cell stiffening. On the other hand, for cells constrained to a small area, cell shape effects are more dominant than substrate stiffness, since increasing substrate stiffness no longer affects cell stiffness. These results suggest that cell size and substrate stiffness can interact in a complex fashion to either enhance or antagonize each other's effect on cell morphology and mechanics.

摘要

来自许多不同组织的细胞感知其微环境的硬度和空间模式,以调节其形状和皮质硬度。目前尚不清楚基质硬度、细胞形状和细胞硬度如何相互调节或相互作用。在这里,我们使用微接触印刷和弹性柱微图案阵列来独立且同时控制细胞形状和基质硬度。我们的实验表明,细胞皮质硬度随基质硬度和铺展面积的增加而增加。对于软基质,基质硬度对细胞皮质硬度的影响比细胞形状更为显著,因为增加黏附面积不会导致细胞变硬。另一方面,对于被限制在小区域的细胞,细胞形状的影响比基质硬度更为显著,因为增加基质硬度不再影响细胞硬度。这些结果表明,细胞大小和基质硬度可以以复杂的方式相互作用,从而增强或拮抗彼此对细胞形态和力学的影响。

相似文献

1
Cell shape and substrate rigidity both regulate cell stiffness.
Biophys J. 2011 Mar 2;100(5):L25-7. doi: 10.1016/j.bpj.2010.12.3744.
2
Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity.
Nat Protoc. 2011 Feb;6(2):187-213. doi: 10.1038/nprot.2010.189. Epub 2011 Jan 27.
4
Cell shape and substrate stiffness drive actin-based cell polarity.
Phys Rev E. 2019 Jan;99(1-1):012412. doi: 10.1103/PhysRevE.99.012412.
5
Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells.
J Mech Behav Biomed Mater. 2014 Oct;38:209-18. doi: 10.1016/j.jmbbm.2014.01.009. Epub 2014 Jan 27.
10
Stiffness of MDCK II Cells Depends on Confluency and Cell Size.
Biophys J. 2019 Jun 4;116(11):2204-2211. doi: 10.1016/j.bpj.2019.04.028. Epub 2019 May 16.

引用本文的文献

1
Glycocalyx hyaluronan removal-induced increasing of cell stiffness delays breast cancer cells progression.
Cell Mol Life Sci. 2025 Feb 27;82(1):96. doi: 10.1007/s00018-025-05577-0.
2
StretchView - A Multi-Axial Cell-Stretching Device for Long-Term Automated Videomicroscopy of Living Cells.
Adv Sci (Weinh). 2025 Mar;12(9):e2408853. doi: 10.1002/advs.202408853. Epub 2025 Jan 10.
3
Microtubules Disruption Alters the Cellular Structures and Mechanics Depending on Underlying Chemical Cues.
Small. 2025 Apr;21(13):e2312282. doi: 10.1002/smll.202312282. Epub 2024 Sep 29.
4
Myotube formation on micropatterns guiding by centripetal cellular motility and crowding.
Mater Today Bio. 2024 Aug 9;28:101195. doi: 10.1016/j.mtbio.2024.101195. eCollection 2024 Oct.
7
Acoustic Wave-Induced Stroboscopic Optical Mechanotyping of Adherent Cells.
Adv Sci (Weinh). 2024 Apr;11(16):e2307929. doi: 10.1002/advs.202307929. Epub 2024 Feb 28.
8
Many-body interactions between contracting living cells.
Eur Phys J E Soft Matter. 2024 Feb 19;47(2):14. doi: 10.1140/epje/s10189-024-00407-w.
9
Vascular endothelial cellular mechanics under hyperglycemia and its role in tissue regeneration.
Regen Biomater. 2024 Jan 25;11:rbae004. doi: 10.1093/rb/rbae004. eCollection 2024.
10
Linking cell mechanical memory and cancer metastasis.
Nat Rev Cancer. 2024 Mar;24(3):216-228. doi: 10.1038/s41568-023-00656-5. Epub 2024 Jan 18.

本文引用的文献

1
Mechanical regulation of cell function with geometrically modulated elastomeric substrates.
Nat Methods. 2010 Sep;7(9):733-6. doi: 10.1038/nmeth.1487. Epub 2010 Aug 1.
2
The mechanical cell.
Curr Biol. 2009 Sep 15;19(17):R745-8. doi: 10.1016/j.cub.2009.06.034.
3
Filamin A is essential for active cell stiffening but not passive stiffening under external force.
Biophys J. 2009 May 20;96(10):4326-35. doi: 10.1016/j.bpj.2009.02.035.
4
Fibroblast adaptation and stiffness matching to soft elastic substrates.
Biophys J. 2007 Dec 15;93(12):4453-61. doi: 10.1529/biophysj.106.101386.
5
Matrix elasticity directs stem cell lineage specification.
Cell. 2006 Aug 25;126(4):677-89. doi: 10.1016/j.cell.2006.06.044.
6
Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures.
Biophys J. 2006 Apr 15;90(8):3012-8. doi: 10.1529/biophysj.105.073114. Epub 2006 Feb 3.
7
Tissue cells feel and respond to the stiffness of their substrate.
Science. 2005 Nov 18;310(5751):1139-43. doi: 10.1126/science.1116995.
9
Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.
Dev Cell. 2004 Apr;6(4):483-95. doi: 10.1016/s1534-5807(04)00075-9.
10
Cells lying on a bed of microneedles: an approach to isolate mechanical force.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9. doi: 10.1073/pnas.0235407100. Epub 2003 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验