Suppr超能文献

AgRP 神经元的快速、可逆激活驱动小鼠的摄食行为。

Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.

机构信息

Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.

出版信息

J Clin Invest. 2011 Apr;121(4):1424-8. doi: 10.1172/JCI46229.

Abstract

Several different neuronal populations are involved in regulating energy homeostasis. Among these, agouti-related protein (AgRP) neurons are thought to promote feeding and weight gain; however, the evidence supporting this view is incomplete. Using designer receptors exclusively activated by designer drugs (DREADD) technology to provide specific and reversible regulation of neuronal activity in mice, we have demonstrated that acute activation of AgRP neurons rapidly and dramatically induces feeding, reduces energy expenditure, and ultimately increases fat stores. All these effects returned to baseline after stimulation was withdrawn. In contrast, inhibiting AgRP neuronal activity in hungry mice reduced food intake. Together, these findings demonstrate that AgRP neuron activity is both necessary and sufficient for feeding. Of interest, activating AgRP neurons potently increased motivation for feeding and also drove intense food-seeking behavior, demonstrating that AgRP neurons engage brain sites controlling multiple levels of feeding behavior. Due to its ease of use and suitability for both acute and chronic regulation, DREADD technology is ideally suited for investigating the neural circuits hypothesized to regulate energy balance.

摘要

几种不同的神经元群参与调节能量平衡。其中,刺鼠相关蛋白(AgRP)神经元被认为可促进进食和体重增加;然而,支持这一观点的证据并不完整。我们使用 Designer Receptors Exclusively Activated by Designer Drugs(DREADD)技术特异性和可逆地调节小鼠神经元活动,结果表明急性激活 AgRP 神经元可迅速显著诱导进食,降低能量消耗,并最终增加脂肪储存。刺激停止后,所有这些影响均恢复到基线水平。相反,在饥饿的小鼠中抑制 AgRP 神经元活动会减少食物摄入。总的来说,这些发现表明 AgRP 神经元活性对于进食是必要且充分的。有趣的是,激活 AgRP 神经元可强烈增加进食的动力,并引发强烈的觅食行为,表明 AgRP 神经元参与控制多个进食行为水平的大脑部位。由于其易于使用和适合急性和慢性调节,DREADD 技术非常适合研究假设调节能量平衡的神经回路。

相似文献

1
Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.
J Clin Invest. 2011 Apr;121(4):1424-8. doi: 10.1172/JCI46229.
2
Chemogenetic manipulation of parasympathetic neurons (DMV) regulates feeding behavior and energy metabolism.
Neurosci Lett. 2019 Nov 1;712:134356. doi: 10.1016/j.neulet.2019.134356. Epub 2019 Aug 27.
3
NPY derived from AGRP neurons controls feeding via Y1 and energy expenditure and food foraging behaviour via Y2 signalling.
Mol Metab. 2022 May;59:101455. doi: 10.1016/j.molmet.2022.101455. Epub 2022 Feb 12.
4
AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.
J Neurosci. 2017 Sep 6;37(36):8678-8687. doi: 10.1523/JNEUROSCI.0798-17.2017. Epub 2017 Aug 7.
5
Lipopolysacharide Rapidly and Completely Suppresses AgRP Neuron-Mediated Food Intake in Male Mice.
Endocrinology. 2016 Jun;157(6):2380-92. doi: 10.1210/en.2015-2081. Epub 2016 Apr 25.
7
An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.
Nature. 2014 Mar 13;507(7491):238-42. doi: 10.1038/nature12956. Epub 2014 Feb 2.
8
Thyroid transcription factor-1 regulates feeding behavior via melanocortin pathway in the hypothalamus.
Diabetes. 2011 Mar;60(3):710-9. doi: 10.2337/db10-0183. Epub 2011 Jan 31.
10
Protective role of AgRP neuron's PDK1 against salt-induced hypertension.
Biochem Biophys Res Commun. 2018 Jun 12;500(4):910-916. doi: 10.1016/j.bbrc.2018.04.192. Epub 2018 Apr 30.

引用本文的文献

1
Lac-Phe induces hypophagia by inhibiting AgRP neurons in mice.
Nat Metab. 2025 Sep 16. doi: 10.1038/s42255-025-01377-9.
3
Brain Cells that Control When We Feel Hungry.
Front Young Minds. 2025 May;13. doi: 10.3389/frym.2025.1461680. Epub 2025 May 15.
4
coordinates diurnal regulation of food intake and thermogenesis.
bioRxiv. 2025 Jul 29:2025.07.23.666379. doi: 10.1101/2025.07.23.666379.
5
Partial FAM19A5 deficiency in mice leads to disrupted spine maturation, hyperactivity, and an altered fear response.
PLoS One. 2025 Aug 5;20(8):e0327493. doi: 10.1371/journal.pone.0327493. eCollection 2025.
6
AgRP neuron activity enhances reward-related consummatory behaviors during energy deficit in mice.
Commun Biol. 2025 Aug 4;8(1):1152. doi: 10.1038/s42003-025-08620-9.
7
A hypothalamic circuit that modulates feeding and parenting behaviours.
Nature. 2025 Jul 30. doi: 10.1038/s41586-025-09268-5.
8
Regulation of Feeding Behavior and Body Weight by Orexigenic Neurons in the Arcuate Nucleus.
J Obes Metab Syndr. 2025 Jul 30;34(3):213-223. doi: 10.7570/jomes25059. Epub 2025 Jul 25.
9
Control of physiologic glucose homeostasis via hypothalamic modulation of gluconeogenic substrate availability.
Mol Metab. 2025 Sep;99:102216. doi: 10.1016/j.molmet.2025.102216. Epub 2025 Jul 18.

本文引用的文献

1
Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization.
Nat Neurosci. 2011 Jan;14(1):22-4. doi: 10.1038/nn.2703. Epub 2010 Dec 5.
3
4
Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation.
Cell. 2009 Jun 26;137(7):1225-34. doi: 10.1016/j.cell.2009.04.022.
5
An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat.
Physiol Behav. 2009 Jul 14;97(5):572-80. doi: 10.1016/j.physbeh.2009.02.010. Epub 2009 Feb 12.
6
Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
Nature. 2009 Jun 4;459(7247):663-7. doi: 10.1038/nature08002. Epub 2009 Apr 26.
8
Body energy homeostasis.
Appetite. 2008 Nov;51(3):442-5. doi: 10.1016/j.appet.2008.06.009. Epub 2008 Jul 3.
9
A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping.
J Neurosci. 2008 Jul 9;28(28):7025-30. doi: 10.1523/JNEUROSCI.1954-08.2008.
10
Dysregulation of the mesolimbic dopamine system and reward in MCH-/- mice.
Biol Psychiatry. 2008 Aug 1;64(3):184-91. doi: 10.1016/j.biopsych.2007.12.011. Epub 2008 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验