Suppr超能文献

皂素通透化心肌纤维中的呼吸测定法氧化磷酸化评估

Respirometric oxidative phosphorylation assessment in saponin-permeabilized cardiac fibers.

作者信息

Hughey Curtis C, Hittel Dustin S, Johnsen Virginia L, Shearer Jane

机构信息

Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary.

出版信息

J Vis Exp. 2011 Feb 28(48):2431. doi: 10.3791/2431.

Abstract

Investigation of mitochondrial function represents an important parameter of cardiac physiology as mitochondria are involved in energy metabolism, oxidative stress, apoptosis, aging, mitochondrial encephalomyopathies and drug toxicity. Given this, technologies to measure cardiac mitochondrial function are in demand. One technique that employs an integrative approach to measure mitochondrial function is respirometric oxidative phosphorylation (OXPHOS) analysis. The principle of respirometric OXPHOS assessment is centered around measuring oxygen concentration utilizing a Clark electrode. As the permeabilized fiber bundle consumes oxygen, oxygen concentration in the closed chamber declines. Using selected substrate-inhibitor-uncoupler titration protocols, electrons are provided to specific sites of the electron transport chain, allowing evaluation of mitochondrial function. Prior to respirometric analysis of mitochondrial function, mechanical and chemical preparatory techniques are utilized to permeabilize the sarcolemma of muscle fibers. Chemical permeabilization employs saponin to selectively perforate the cell membrane while maintaining cellular architecture. This paper thoroughly describes the steps involved in preparing saponin-skinned cardiac fibers for oxygen consumption measurements to evaluate mitochondrial OXPHOS. Additionally, troubleshooting advice as well as specific substrates, inhibitors and uncouplers that may be used to determine mitochondria function at specific sites of the electron transport chain are provided. Importantly, the described protocol may be easily applied to cardiac and skeletal tissue of various animal models and human samples.

摘要

线粒体功能研究是心脏生理学的一个重要参数,因为线粒体参与能量代谢、氧化应激、细胞凋亡、衰老、线粒体脑肌病和药物毒性。鉴于此,测量心脏线粒体功能的技术备受需求。一种采用综合方法测量线粒体功能的技术是呼吸测定法氧化磷酸化(OXPHOS)分析。呼吸测定法OXPHOS评估的原理围绕使用克拉克电极测量氧浓度展开。由于通透的纤维束消耗氧气,封闭腔室内的氧浓度会下降。使用选定的底物 - 抑制剂 - 解偶联剂滴定方案,电子被提供给电子传递链的特定部位,从而可以评估线粒体功能。在对线粒体功能进行呼吸测定分析之前,需利用机械和化学预处理技术使肌纤维的肌膜通透。化学通透使用皂苷选择性地穿透细胞膜,同时保持细胞结构。本文详细描述了制备用于测量氧消耗以评估线粒体OXPHOS的皂苷去皮心脏纤维所涉及的步骤。此外,还提供了故障排除建议以及可用于确定电子传递链特定部位线粒体功能的特定底物、抑制剂和解偶联剂。重要的是,所描述的方案可轻松应用于各种动物模型的心脏和骨骼肌组织以及人类样本。

相似文献

6
Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers.
Biochim Biophys Acta. 1993 Aug 16;1144(1):46-53. doi: 10.1016/0005-2728(93)90029-f.
8
Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers.
Biochim Biophys Acta. 1987 Jun 29;892(2):191-6. doi: 10.1016/0005-2728(87)90174-5.

引用本文的文献

1
Protocol for measuring mitochondrial respiratory capacity from buccal cell swabs.
STAR Protoc. 2025 Aug 2;6(3):104004. doi: 10.1016/j.xpro.2025.104004.
2
Impact of experimental colitis on mitochondrial bioenergetics in intestinal epithelial cells.
Sci Rep. 2022 May 6;12(1):7453. doi: 10.1038/s41598-022-11123-w.
4
A New Strategy to Preserve and Assess Oxygen Consumption in Murine Tissues.
Int J Mol Sci. 2021 Dec 22;23(1):109. doi: 10.3390/ijms23010109.
5
The molecular role of Sigmar1 in regulating mitochondrial function through mitochondrial localization in cardiomyocytes.
Mitochondrion. 2022 Jan;62:159-175. doi: 10.1016/j.mito.2021.12.002. Epub 2021 Dec 10.
6
Considerations for using isolated cell systems to understand cardiac metabolism and biology.
J Mol Cell Cardiol. 2021 Apr;153:26-41. doi: 10.1016/j.yjmcc.2020.12.007. Epub 2020 Dec 21.
7
Cell-permeable succinate prodrugs rescue mitochondrial respiration in cellular models of acute acetaminophen overdose.
PLoS One. 2020 Apr 6;15(4):e0231173. doi: 10.1371/journal.pone.0231173. eCollection 2020.
8
The Effect of Estradiol Administration on Muscle Mass Loss and Cachexia Progression in Female Mice.
Front Endocrinol (Lausanne). 2019 Nov 1;10:720. doi: 10.3389/fendo.2019.00720. eCollection 2019.
9
Bimodal right ventricular dysfunction after postnatal hyperoxia exposure: implications for the preterm heart.
Am J Physiol Heart Circ Physiol. 2019 Dec 1;317(6):H1272-H1281. doi: 10.1152/ajpheart.00383.2019. Epub 2019 Nov 8.
10
Relationship between V̇o, cycle economy, and mitochondrial respiration in untrained/trained.
J Appl Physiol (1985). 2019 Dec 1;127(6):1562-1568. doi: 10.1152/japplphysiol.00223.2019. Epub 2019 Sep 26.

本文引用的文献

1
Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject.
Antioxid Redox Signal. 2010 Apr 15;12(8):961-1008. doi: 10.1089/ars.2009.2704.
2
Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
Int J Biochem Cell Biol. 2009 Oct;41(10):1837-45. doi: 10.1016/j.biocel.2009.03.013. Epub 2009 Apr 2.
3
Mitochondria in the human heart.
J Bioenerg Biomembr. 2009 Apr;41(2):99-106. doi: 10.1007/s10863-009-9211-0.
4
Impaired insulin signaling accelerates cardiac mitochondrial dysfunction after myocardial infarction.
J Mol Cell Cardiol. 2009 Jun;46(6):910-8. doi: 10.1016/j.yjmcc.2009.02.014. Epub 2009 Feb 26.
6
Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity.
Circulation. 2005 Oct 25;112(17):2686-95. doi: 10.1161/CIRCULATIONAHA.105.554360.
8
Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology.
Adv Exp Med Biol. 2003;543:39-55. doi: 10.1007/978-1-4419-8997-0_4.
9
Action of saponin on biological cell membranes.
Nature. 1962 Dec 8;196:952-5. doi: 10.1038/196952a0.
10
Oxygen solubilities of media used in electrochemical respiration measurements.
Anal Biochem. 2003 Aug 1;319(1):105-13. doi: 10.1016/s0003-2697(03)00274-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验