Suppr超能文献

肌营养不良症中上调 dysferlin、膜联蛋白 A1 和 Mitsugumin 53,并在拉伸时定位于 T 系统的纵管。

Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

机构信息

Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia.

出版信息

J Neuropathol Exp Neurol. 2011 Apr;70(4):302-13. doi: 10.1097/NEN.0b013e31821350b0.

Abstract

Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

摘要

肌营养不良蛋白基因突变导致膜修复缺陷引起遗传性肌营养不良。肌营养不良蛋白的三个相互作用的伴侣也与膜再封闭有关:陷窝蛋白 3(肢带型肌营养不良 1C 型)、膜联蛋白 A1 和新鉴定的蛋白 mitsugumin 53(MG53)。MG53 积聚在膜损伤部位,MG53 敲除小鼠表现出进行性肌营养不良。本研究探讨了 MG53 在人类骨骼肌中的表达和定位、各种形式的肌营养不良症中膜修复蛋白如何被调节以及 MG53 是否是人类肌肉疾病的主要原因。在对照人类肌肉中,mitsugumin 53 显示出可变的肌膜和/或细胞质免疫标记,而在营养不良患者中水平升高。在 50 名肌营养不良症患者中未发现致病性 MG53 突变,这表明 MG53 不太可能是澳大利亚肌营养不良症的常见原因。Western blot 分析证实,不同的肌营养不良症中 MG53、肌营养不良蛋白、膜联蛋白 A1 和陷窝蛋白 3 不同程度地上调。重要的是,MG53、膜联蛋白 A1 和肌营养不良蛋白定位于 T 管网络,并在过度拉伸时在 T 系统的纵管上显示出丰富的标记。我们的结果表明,T 系统的纵管可能代表该膜修复复合物靶向的生理膜损伤部位。

相似文献

2
Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle.
Int J Biochem Cell Biol. 2013 Aug;45(8):1927-38. doi: 10.1016/j.biocel.2013.06.007. Epub 2013 Jun 19.
3
Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin.
J Biol Chem. 2009 Jun 5;284(23):15894-902. doi: 10.1074/jbc.M109.009589. Epub 2009 Apr 20.
4
Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair.
J Neurosci. 2013 Mar 20;33(12):5085-94. doi: 10.1523/JNEUROSCI.3560-12.2013.
7
Treatment with Recombinant Human MG53 Protein Increases Membrane Integrity in a Mouse Model of Limb Girdle Muscular Dystrophy 2B.
Mol Ther. 2017 Oct 4;25(10):2360-2371. doi: 10.1016/j.ymthe.2017.06.025. Epub 2017 Jul 3.
9
Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing.
J Biol Chem. 2003 Dec 12;278(50):50466-73. doi: 10.1074/jbc.M307247200. Epub 2003 Sep 23.
10
Increased dysferlin expression in Duchenne muscular dystrophy.
Anal Quant Cytopathol Histpathol. 2014 Feb;36(1):15-22.

引用本文的文献

2
Wound Repair of the Cell Membrane: Lessons from Cells.
Cells. 2024 Feb 14;13(4):341. doi: 10.3390/cells13040341.
3
Minimal expression of dysferlin prevents development of dysferlinopathy in dysferlin exon 40a knockout mice.
Acta Neuropathol Commun. 2023 Jan 18;11(1):15. doi: 10.1186/s40478-022-01473-x.
5
Activation of SIRT1 promotes membrane resealing via cortactin.
Sci Rep. 2022 Sep 12;12(1):15328. doi: 10.1038/s41598-022-19136-1.
8
Cytoplasmic HDAC4 regulates the membrane repair mechanism in Duchenne muscular dystrophy.
J Cachexia Sarcopenia Muscle. 2022 Apr;13(2):1339-1359. doi: 10.1002/jcsm.12891. Epub 2022 Feb 15.
9
The C2 domains of dysferlin: roles in membrane localization, Ca signalling and sarcolemmal repair.
J Physiol. 2022 Apr;600(8):1953-1968. doi: 10.1113/JP282648. Epub 2022 Mar 8.
10
The Dysferlin Transcript Containing the Alternative Exon 40a is Essential for Myocyte Functions.
Front Cell Dev Biol. 2021 Nov 23;9:754555. doi: 10.3389/fcell.2021.754555. eCollection 2021.

本文引用的文献

1
Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair.
Circ Res. 2010 Jul 9;107(1):76-83. doi: 10.1161/CIRCRESAHA.109.215822. Epub 2010 May 13.
2
Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population.
Brain. 2009 Nov;132(Pt 11):3175-86. doi: 10.1093/brain/awp236. Epub 2009 Sep 18.
4
Frequency of LGMD gene mutations in Italian patients with distinct clinical phenotypes.
Neurology. 2009 Apr 21;72(16):1432-5. doi: 10.1212/WNL.0b013e3181a1885e.
5
Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin.
J Biol Chem. 2009 Jun 5;284(23):15894-902. doi: 10.1074/jbc.M109.009589. Epub 2009 Apr 20.
6
Membrane repair redux: redox of MG53.
Nat Cell Biol. 2009 Jan;11(1):7-9. doi: 10.1038/ncb0109-7.
7
MG53 nucleates assembly of cell membrane repair machinery.
Nat Cell Biol. 2009 Jan;11(1):56-64. doi: 10.1038/ncb1812. Epub 2008 Nov 30.
8
MG53 regulates membrane budding and exocytosis in muscle cells.
J Biol Chem. 2009 Jan 30;284(5):3314-3322. doi: 10.1074/jbc.M808866200. Epub 2008 Nov 24.
9
The accessibility and interconnectivity of the tubular system network in toad skeletal muscle.
J Physiol. 2008 Nov 1;586(21):5077-89. doi: 10.1113/jphysiol.2008.155127. Epub 2008 Sep 4.
10
Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis.
Neuromuscul Disord. 2008 Jan;18(1):34-44. doi: 10.1016/j.nmd.2007.08.009. Epub 2007 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验